

Pilot Test of Novel Electrochemical Membrane System for Carbon Dioxide Capture and Power Generation (DE-FE0026580)

Presented to: 2018 NETL CO₂ Capture Technology Project Review Meeting Pittsburgh, PA August 13-16, 2018

- Design an ECM-based carbon capture pilot plant (60 T/D) prototypical of a commercial unit
- Fabricate and install the pilot-scale plant at a coal facility
- Conduct pilot plant tests, demonstrating >90% capture (>95% CO₂ purity)
- Complete Techno-Economic Analysis (TEA) of ECM carbon capture applied to a 550 MW baseline supercritical PC plant, achieving 30% less COE compared to amine scrubbers
- Determine Environmental, Health and Safety (EH&S) requirements of ECM Carbon Capture plants

- ECM system design, equipment and plant costing)
- Pilot system key equipment specification and selection
- Flue gas clean-up system design
- Interconnection system design

- host
- Construction management
- Permitting support
- Pilot plant installation and test support

- Plant installation
- Maintenance support

- Support
- Instrumentation
- **Electrical**

Pilot Demonstration Site

- James M. Barry Electric Generating Station, Alabama Power/Southern Co.
- Location: Bucks, Al
- Nameplate Capacity: 2,370 MWe, Mix of Coal and Natural gas

Work Breakdown Structure

Project Schedule Overview

Completed BP1 tasks and submitted continuation application to initiate BP2

	BP 1			BP 2					BP 3					
	2017		20		18			20	2019		202		20	
	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Techno-Economic Analysis (TEA) & EHS														
Initial														
Update														
Pilot Plant BOP Design														
Pilot Plant Fabrication														
BOP Equipment														
ECM Module														
Factory Acceptance Tests														
Install														
Pilot Plant Operation														
Field Acceptance Testing and Commission														
Test & Evaluation														
De-Commission														

Project Budget: \$34.12 MM

DOE Share: \$15MM, Cost Share: \$19.12 MM

Electrochemical Membrane (ECM) Technology Overview

ECM Operating Principle

- Simultaneous Power Production and CO₂ Separation from Flue Gas of an Existing Facility
- Excess Process Water Byproduct
- Complete Selectivity towards CO₂ as Compared to N₂

Modular Technology

ECM Assembly Using Planar Cells (~9000 cm²)

ECM Stack (Using ~400 ECM Assemblies)

ECM Module

(4 Stacks)

ECM Pilot Plant Development

Simplified Process Flow Diagram

- Re-application of commercially-proven fuel cell technology for CO₂ Capture
- Opportunity for Co-Production of Syngas or H₂

Design Basis Summary

Modes of Operation

- 1.90% Carbon Capture from Coal-fired Boiler (CFB) Flue Gas (FG)
- 2. Stand-alone: Power generation only, no flue gas processed
- 3. transient/parametric evaluation:
 - 70% Carbon Capture from CFB FG
 - Dynamic response to reduced FG availability (i.e. turn down)
 - Ability to accommodate variable FG carbon loading (e.g. lower CO₂ conc.)
 - Emergency trip/shutdown

Pilot Plant Performance

Operating Mode	90% Ca Coal-Deri	pture ved FG	70% Car Coal-Deri	oture ved FG	Stand-Alone (No FG Available)				
MCFC Gross Power, DC	1863.4	kW	2542.9	kW	3112.3	kW			
Energy & Water Input									
Natural Gas Fuel Flow	169.4	scfm	243.2	scfm	329.9	scfm			
Fuel Energy (LHV)	2877.8	kW	4087.0	kW	5723.1	kW			
Water Consumed/(Produced)	(1.8)	gpm	(2.4)	gpm	(0.3)	gpm			
Consumed Power									
AC Power Consumption	(611.0)	kW	(911.6)	kW	(206.0)	kW			
Inverter Loss	(74.5)	kW	(101.7)	kW	(124.5)	kW			
Total Parasitic Power Consumption	(685.6)	kW	(1013.3)	kW	(330.5)	kW			
Net Generation & Efficiency									
CEPACS Plant Net AC Output	1177.8	kW	1529.6	kW	2781.8	kW			
Electrical Efficiency (LHV)	40.9	%	37.4	%	48.6	%			
Carbon Capture									
Total Carbon Capture, %	92	%	75	%	N/A				
Carbon Capture from FG, %	90	%	70	%	N/A				
Total CO ₂ Captured, Tons per Day	67	T/D	93	T/D	0	T/D			
CO ₂ Purity	99.6	%	99.6	%	N/A				

- Pilot Plant is designed to capture up to 90 tons per day of CO₂
- The system is net water producer during the above modes of operation

Flue Gas Polishing System

- Cleanup equipment train design, specifications, and RFQ process completed in partnership with AECOM
- Vendor bids selected for each piece of equipment, ready for purchasing

Anode Gas Compressor

- Key Design Features:
 - Fuel cell anode exhaust contains the "captured" CO₂ from the flue gas.
 - Carbon capture process requires anode exhaust gas be compressed from ~18 psia to 265 psia.
 - Includes inter-stage cooling and water knockout.
- Engineering specification created to obtain bids from five (5) vendors:
- Evaluated bids for Reciprocating (3) and Screw Type (2) compressors.
- Selected compressor based on lower power consumption and lower price than comparable units.

Compressor Skid Design

Reciprocating Compressor

- Key Design Features:
 - Absorption technology selected to utilize thermal energy of process, raising system efficiency by avoiding parasitic power penalty of mechanical chiller
 - Chiller performance specified to be ~ 100 Tons

General Arrangement

Site Plan Overview

Techno-Economic Analysis

<u>Combined Electric Power and Carbon-dioxide Separation (CEPACS) System</u> Concept Implementation for 550 MW Reference Supercritical PC Plant*

- 4.3 Million tons of CO₂ capture per year
- 319 MW ECM-based system would capture 90% of CO₂ from 550-MW plant
- 2.5 GWh power generated per year @ 40.7% Efficiency (based on HHV NG)
- Large-scale field-erected stack enclosures can be operated independently, allowing for high plant availability
- Incremental process innovations have reduced ECM stack count from 1792 to 1664 (vs. previous TEA in prior project)
- Packaging improvements have been implemented to incorporate CO₂ purification BoP equipment within ~7 acre footprint

<u>319 MW ECM Plant for capture</u> <u>from coal systems</u>

* Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, 19 Revision 2a, DOE/NETL-2010/1397, September 2013.

fuelcellenergy AECOM CEPACS System Economics

- PC plant retrofitted with CEPACS system has 31% lower COE than the plant with amine scrubbing for CO₂ Capture
- ECM-Based CEPACS System can meet DOE Target of <\$40/tonne CO₂ captured (2011 USD)

Carbon Capture Deployment

Large Scale Future Systems

- 320-MW plant for capture from 550-MW coal system, developed in DOE program: 18,000 tons/day CO₂ capture
- 160-MW plants for capture from 500-MW NGCC developed in ExxonMobil program: >5,000 tons/day CO₂ capture

ECM-based projects

- Single or multiple-unit system
- Coal and natural gas power plants
- Industrial thermal systems
- Commercial CO2 offtake or sequestration
- 1 to 50-MW fuel cell power
- Up to 3000 tons/day CO2 capture

ECM-Based Pilot project at Plant Barry, AL

- On line in 2019
- 90% capture from coal flue
- Demonstration of natural gas capture under ExxonMobil program
- 60 tons/day CO₂ capture

E**∕**xonMobil

Near Term

Future

Project Size

Time

Today

- Techno-Economic Analysis and Environmental Health and Safety analysis completed for ECM technology applied to a reference supercritical PC plant
 - Estimated COE is 31% less than baseline approaches (amines), with cost of CO₂ captured estimated at \$34/tonne (2011 USD)
- BP1 engineering design of pilot system complete
- Tie-in engineering effort (AECOM-led) complete
- Continuation application to proceed to BP2 of the project was submitted to DOE
- Ready to initiate BP2 tasks for plant construction

Support from DOE/NETL (Co-operative Agreement DE-FE0026580) and guidance from: José Figueroa, Lynn Brickett, John Litynski, Angelos Kokkinos, and others at NETL

