

CMC Research at NASA Glenn

Joseph E. Grady, Branch Chief Ceramic & Polymer Composites Branch

NASA Glenn Research Center Cleveland, Ohio

joseph.e.grady@nasa.gov

October 31, 2018

National Aeronautics and Space Administration

NASA Glenn Core Competencies

In-Space Propulsion and Cryogenic Fluids Management

Physical Sciences and Biomedical Technologies in Space

Communications Technology and Development

Power, Energy Storage and Conversion

Materials and Structures for Extreme Environments

Lightweight, high temperature composite materials improve engine efficiency

Use of these materials in critical engine components reduces emissions, fuel burn and weight

CMC Research at NASA Glenn

- CMC Development & Characterization
 - 2700°F CMC development
 - measure effects of engine environment on durability
- CMC / EBC Durability: Modeling & Validation
 - predict durability & failure modes based on understanding of fiber, matrix & EBC interactions (multi-scale models)
- Additive Manufacturing
 - for turbine engine components and electric motor applications

NASA 2700°F CMC combines three technology advancements

 Creep-resistant Sylramic-iBN fiber

Advanced 3D fiber architecture

Hybrid CVI-PIP
 SiC matrix

Durable CMC / EBC material demonstrated in 2700°F turbine environment

Challenge

A durable 2700°F Ceramic Matrix Composite with Environmental Barrier Coating would reduce cooling air required for turbine engine components, increasing engine efficiency and reducing fuel burn and emissions

Approach

- Fabricate turbine vane test article from 2700°F CMC recently developed in TTT
- Coat CMC test article with Environmental Barrier Coating, using two different EBC processing methods
- Evaluate durability of CMC / EBC subelements ٠ in a TRL 5 rig test simulating a turbine environment, at temperatures to 2700°F

Significance

For the first time, a durable CMC/EBC material system was demonstrated at TRL 5 in a 2700°F turbine environment. Engine implementation could reduce fuel burn 6% in B737-size aircraft

www.nasa.gov

Accomplishment

Demonstrated 15-hour durability for a CMC/EBC system with minimal spallation of the coating under simulated engine operating conditions at temperatures to 2700°F

7 hours of 2700F cycles

Turbine test rig used by P&W / UTRC

test article after 15 hours at 2500 / 2600 / 2700 ° F

Spall of EB-PVD coating after

Modeling Environmental Effects on SiC/SiC CMCs

Objective: Determine oxidation mechanisms and develop models for the mechanical-oxidation-creep interactions that affect strength and life of $SiC_f/BN/SiC$ CMCs

Approach:

- Perform parallel and correlative experimental and numerical analysis studies.
- Build on the numerical solution methodology developed previously for the oxidation of C/SiC CMCs.

Testing

Development of CMAS-resistant EBCs

PROBLEM: Above 1100°C, molten calcium-magnesium-aluminosilicate (CMAS) can degrade environmental barrier coatings via thermochemical interactions, resulting in premature EBC failure

APPROACH:

- Understand causes of EBC degradation by characterizing thermochemical interactions of CMAS with ytterbium disilicate (YbDS) EBC
- Expose hot-pressed YbDS substrates to CMAS at 1200-1500°C for 1- 50 hour durations
- Evaluate CMAS/YbDS interactions using transmission electron microscopy (TEM), selected area diffraction (SAD) and energy dispersive spectroscopy (EDS) for microstructural and compositional analysis

CMAS/YbDS substrate after 1500°C-50h

OBSERVATIONS:

- CMAS infiltrated YbDS substrate, suggesting ytterbium disilicate is not effective as a standalone CMAS-resistant EBC
- TEM study revealed no apatite (Ca₂Yb₈(SiO₄)₆O₂) phase formation, supporting results from previous characterization
 Contact: Valerie.L.Wiesner@nasa.gov

Consortium Established for CMC/EBC Environmental Durability Testing, Modeling & Validation

NASA Glenn

- Conduct mechanical testing of minicomposites at 2200-2700°F in air and steam environments
- Optimize EBC/CMC interface based on bonding and crack deflection
- Develop and validate models for mini-composite properties, durability and failure modes

Rolls Royce HTC

- Fabricate CMC mini-composites using industry fabrication processes and constituents
- Define relevant material operating conditions; stress, temperature, environment

Univ. California Santa Barbara

- Microstructural characterization of damage progression using Digital Image Correlation, Acoustic Emission measurement and SEM
- NASA Space Technology Research Fellowship

Contact: James.D.Kiser@nasa.gov

Air Force Research Labs

- Damage characterization using Digital Image Correlation and AE methods
- Microstructural characterization by High Energy x-ray imaging (w/ UC Berkeley) and automated serial sectioning of test specimens with data reconstruction

Additive Manufacturing: GRC Composites Research

ExOne M-Flex Binder Jet machine:

Powder bed process with *tailored binders* and *chopped fibers* for CMC fabrication

n-Scrypt direct printing machine:

- Multi-material systems
- Ceramic pastes, electronic pastes, adhesives, solders, plastics

Multi-material stator for high power density electric motor

The first CMC turbine engine components by additive manufacturing

contact: michael.c.halbig @nasa.gov

cooled doublet nozzle sections

SiC/SiC CMCs have 20% chopped SiC fiber