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Outline

e Introduction to the problem and general approach

e Experimental activities

e Computational activities



RDE wave dynamics: multiple wave systems

* Flow is comprised of
more than just a single
discrete detonation
wave.

e Secondary Waves are
visible to the naked
eye, and interactions
between waves results
in an increased
luminosity.




Wave dynamics results in irregular pressure variation signature
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Operation modes observed possibly linked to the coupling of wave
with air inlet / fuel injection, and depends on flowpath details

e Modes of operation previously observed for round RDE

—Mode 1: Stable detonation, single rotating reaction front

—Mode 2: Stable detonation, two co-rotating reaction fronts
—Mode 3: Rotating deflagration, counter rotating reaction fronts
—Mode 4: Pulsed deflagration, no coherent rotational reaction fronts

—Mode 5: Unstable transitional behavior among modes



RDEs are intrinsically dynamic devices:
Dynamics, wave coupling and loss of pressure gain

To diffuser and turbine

Effectively non-stiff

. _ Stiff injector
injector (intermittent) From air/fuel manifold

e Unsteady operation of injection system e Strongly coupled system
— Injector effectively transition from a stiff to a — Response of injection system
non-stiff injector — Back-reflections from diffuser (impedance
— Post-detonation products backflow into mismatch and wave reflections)
plenums — Mixing dynamics and effectiveness
— Excite plenum dynamics e Incomplete fuel/air mixing

e Fuel/air charge stratification
— Detonation wave dynamics and structure
e Mixture leakage (incomplete heat release)

e Parasitic combustion

From: (top) Nordeen et al., AIAA 2011-0803



Overarching goals

e Preamble: Recognize that RDE is an intrinsically dynamic system
— Components need to be tuned or be robust to external dynamics for stable op

e Goals: Understand how operability and performance is affected by
— Dynamics of each component

— Multi-component fuels

e What needs to be done to understand dynamics
1. Identify and classify them
. Understand the underlying mechanism for their existence
. Determine whether they are important
. Determine how they scale
. Investigate if and how the response of components couple
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. Understand what components’ dynamics and their coupling do to the detonation wave
e Airinlet / fuel injection dynamics
e Wave reflections from inlets and exhaust
e \Wave diffraction / reflections
e Unsteady mixing
e Susceptibility to onset of deflagration
e Vitiation effects (scavenging or partial pre-ignition)
e Fuel chemistry effects



Objective for today

e Experiments
— Identify and classify system of waves that may exist in an RDE

—Investigate if they depend on injection scheme

e Computations
— Full-system calculations
e Effect of injector design
— Racetrack modeling

— Ethylene/air RDE operation
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RDE experimental program at U-M

e Injector sector subassembly
— Unwrapped sector of RDE injector

— Unit problem studies
e Mixing effectiveness

e Shock-induced mixing

* Round RDE (6” diameter)
— Operational with H,/Air, various flow rates and equivalence ratios

— Expanded to operate with multi-component fuels (hydrocarbon blends)
e Working toward stabilizing HC blends (syngas and NG applications)
— Instrumentation development is continuously ongoing

e Combination imaging and quantitative measurements of state

e Optical RDE (Race-Track RDE)
— Fundamental physics in RDE-relevant flowfield
— Equivalent to 12” round RDE

— Used for flowfield measurements using laser diagnostics
under RDE relevant conditions

¢ Imaging for mixing, detonation structure, injector response studies



RDE test facility
e Staged operation:
—Ignition at low flow rates
— Fuel/air ramp up to operating flow
rate (up to 1 kg/s)
e Use staging to:
—Ignition sequence
—Transition between fuel types
— Conduct transient studies, e.g.:
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RDE test facility

e Facility capabilities:
— Air and oxygen-enriched air — Multi-component fuel (up to 5)
— Preheating (up to 600 K) e Mixtures or fuel staging
— Inlet pressure up to 250 psi (with preheat) ~ — Fuel/air transients



RDE test facility

 What we have/are exploring:
—Most work conducted with hydrogen/air
— Explored methane/hydrogen and ethylene/hydrogen operation
e Working on it for small scale RDE
e Requires higher pressure, some air pre-heat, some O, enrichment and some luck
—High(er) pressure operation
e Choke plate (but the exhaust could also be pressurized)
e Required for hydrocarbon operation
e But also to assess gain potential and diagnostic needs

— Detonation initiation without direct source (e.g., pre-det)



6” diameter round RDE

* Modular configuration in its geometry and operation
» Quick replacement/study of injection schemes

« Parametric studies for geometric scaling studies
(e.g., for dynamics study)

* Multiple injection schemes

Afterh To exhaust Exhaust
erburner
Equivalence ratio
¢=12 1 Sudden expansion .
/ Detonation
$=1.0
Testing region CTAP and dynamic ‘ Small format
transducers optical access
$=0.8 1 —
$=0.6 —————— Air/fuel plenums

0 0.1 0.2 0.3 0.4 0.5
Air mass flow rate, kg/s

Air plenum
dynamic transducer Air and fuel plenum
mean pressure

[1] Gaillard et al., Acta Astronautica, 111:334-344 2015
[2] Schwer & Kalaisanath, 2015 AIAA Scitech, AIAA-2015-3782



6” diameter round RDE: basic instrumentation

Normalized axial position
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6” diameter round RDE: optical instrumentation

Capabilities we are developing
* Emission spectroscopy

o Distribution and evolution of
reaction fronts

* Thermometry

o OH absorption
o H,0 absorption
* IR imaging

o End objective: time revolved
imaging of combustion specieg

¢ Wave location detection

* Hardware and methods mostly ready
* Testing is on the way



Injection schemes considered so far

Radial air flow
(e.g., AFRL geometry)
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Axial, low(er) loss inlet configuration
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Operability: radial vs axial flowpath
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Stable detonation operation as air/fuel plenum pressures

become similar (axial flowpath)
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Tailoring and matching air/fuel injector response is critical




Gain and the lack of loss
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e |nlet pressure is lower in detonation

than when in deflagration mode at the
same ER and mass flow

— Difference is A

— Significant amount

— Increases at lower ER (more stable
detonation)

e To move the same mass, at nominally
the same enthalpy, we require less
inlet pressure

e Possibilities:

— Are losses along channel less in
detonation mode?

— If losses are the same, is there pressure
gain that offset them, thus requiring
lower inlet pressure

e With the same turbine, operated at
the same turbine inlet conditions, a
smaller OPR compressor could be
used
— This translates into increased efficiency



Some definitions

Peak pressure
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Variation of base pressure with operating condition

Upstream of wave
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e Base pressure is the minimum pressure during a cycle
* For detonation operation, base pressure is higher than plenum

pressures



Some definitions

Peak pressure
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Waterfall spectra

3F , Y /
= I Ve (TS A o s
¥ 1 (3 ? 28
225 f | b ‘
; | : | | ! '
2 H - TR Mg ol bk : ‘4 - A .o‘hh.n..n‘.uﬂ
b A AR TN NP Y RGN A
(0 0.5 | 1.5 2

e Multiple, superimposed tones
—Wave propagation: f = 0.8 f;

—Tone I: f= f,—Present in detonation mode as flow rate increases, but also in
deflagration mode

—Tone II: = 0.5 f, — Present in deflagrating mode
—Tone III: f'= 0.25 f, — Weak feature present in detonation mode
—?: Some not identified

e Hypothesis:

—Due to coupling with and response of plenums



Construction of x-f diagrams for wave information extraction

e Each frame is discretized
into 101 bins evenly
spaced around the
annulus.

* Reduces a single frame to
column vector

e Combination of the column
vectors allow for the
creation of x-f diagram




x-t diagrams: additional waves are present
“ C

Video x-t diagram

Primary Detonation Wave (A): travels at 80% of Chapman-Jouguet
speed. Easily seen in video and x-¢ diagram.

Secondary Wave System (C): Pair of waves traveling counter to the
main detonation wave. Travels at approximately 1000 m/s.

Are there others? Need a more direct method for detection.



Simple wave detection algorithm not adequate
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Wave identification method based on
Galilean Shifted Fourier Transform (GFST)
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3. Use a modified Radon transform to
reduce the GSFS to a series of curves
like the one above.

4. Extract peaks and corresponding
information to gather information
about the wave systems

5. Repeat for all subsections of the x-¢
diagram



RDE Flow Fields: 3 Wave Systems

A: Primary detonation
wave. Travels at 80% of
Chapman-Jouguet speed

B: Counter rotating fast
wave. Travels counter to the
primary detonation wave.
Typically travels at
approximately the same
speed as Primary
Detonation. However can
move up to 200 m/s slower

. Counter rotating slow
wave pair. Two waves
travelling counter to the wave
at approximately 1000 m/s
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Three Wave Systems In all measurements

Axial air inlet
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Summary
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Temporal information of 3 wave systems

Technique can be applied
over short periods of time
allowing for temporal
variation in wave speed,
luminosity for each wave.

Normalized Velocity [U/Uci]
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Intensity



Temporal information of 3 wave systems

Normalized Velocity [U/ch]

Run 00136

Secondary wave

accelerates

Main wave slows down

Ay el A L

6.4 6.6
Time [s]

6.8

Switching phenomena in
this case is the overtaking
in strength of the
constantly propagating
counter wave

Could be that it is a natural
resonance that happens
over time

Tertiary waves follow the
main detonation wave.



Summary of speeds of each type (normalized by D)
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PDF of wave speed for axial and radial inlet flowpath
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Constructive/destructive interference of wave systems

(Example for axial flowpath, ¢
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Stability of primary wave thought to depend on operation
and strength of secondary/tertiary wave systems, but not

proven yet
More stable
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Question: how do these dynamics affect overall operability and performance?



Lesson learnt

e Further quantified operation of RDE with different inlet/injection
geometries

e |dentified a complex system of waves

—Three wave system
— Affects the operability of the RDE
e Not yet clear how

— Linked to operating conditions and geometry
e But details are not clear yet



Next steps for experimental program

e Continue to understand the system of waves
—Link to air inlet response
— Link to fuel injection response
— Link to mixing and combustion kinetics

— Effect of exhaust plane

e Main question to be answer

—How do these dynamics affect the stability and performance?

e To do:

— Need to define metrics for stability and performance
— More instrumentation to track dynamics of each component

—More parametric variations on geometry and operating conditions required
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Full-system
Simulations of RDEs

Takuma Sato, Supraj Prakash, Venkat Raman




Full-scale Solver with Detailed Chemistry

UNIVERSITY OF

e OpenFOAM code base

* Fully rewritten to provide low dissipation
shock-capturing

e Low dispersion/dissipation finite volume
approach

* Detailed chemistry by integration with
Cantera

e Any chemistry mechanism can be simulated

e CPU/GPU capability

* Direct chemistry integration

e Scaling tested up to 250K cores

e 4000 GPUs

e Time to solution

* from 8.5 months (UM geometry) to 2 days
(NETL)

Detonatioh frbnt
RS

SANN
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3D full-system simulation

| Air Force Research Lab (AFRL)]

Detonation
Chamber
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General Behavior M
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Fuel-air Mixing M
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o Stratification of H2/ air near
detonation front

* Variation in equivalence ratio

______ @ Mixing

* Temporal changes in inflow jets L —
due to detonation waves : L.X e o I;I
Right before a detonation wave comes in . 1/4 cycle after a detonation passes
' : r
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Species Evolution

* Product gases appears in pre-
detonation region

e Parasitic combustion,
old product gases from the previous cycle

e Peak pressure drops compared to 1D case e Tmid_{~.

FE
_______

_ Sampling line
Residual gases from p eqqyre, species

previous cycle
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|deal case of 1D: H2/ Air (dx = 2E-4 m)
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Species and Temperature Data

e Pressure loss

UNIVERSITY OF
MICHIGAN

10Y v ' 10
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e Nearly 40 % lower peak pressure

 Delay reaction
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e Energy feeding process is
not ideal

e Deteriorate operation

|deal case of 1D: H2/ Air (dx = 2E-4 m)
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CTAP comparison - Axial pressure M
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UM Racetrack geometry VAR
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Ethylene/Air Detonations with AFRL Config M
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* Wider channel but same injection
scheme as hydrogen/air

Channel width
* Ethylene detonation cell size is larger (mm)
_ H2/Air 7.6
* Overall weaker detonation wave
C2H4/Air 20.7

20.7 mm €—> ' | Flow-field
Mesh i i E (Running)
Oxidizer E
_> :
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Conclusions and Current Work

* Full-scale simulations are beginning to match
experimental observations

* More confidence in simulations and experiments

e Stratification plays a crucial role

* Interaction with pre-burnt gases reduces pressure peaks

e Capability to simulate arbitrary fuels and configurations
tested

* 4 configurations and 6 fuels being simulated now



Questions?



