

Gaurav Sant¹, Laurent Pilon², Narayanan Neithalath³,

Erika La Plante¹, Sara Vallejo², Anand Godara³

¹Civil and Environmental Engineering, UCLA

²Mechanical and Aerospace Engineering, UCLA

³School of Sustainable Engineering and the Built Environment, Arizona State University

<u>Developed for:</u> NETL Carbon Capture, Utilization, Storage, Oil & Gas Technologies Integrated Review Meeting

August 26–30, 2019 in Pittsburgh, PA

Presentation outline

- Project Overview and Technology Background: Background and overall project objectives, upcycled concrete production process, advantages and challenges, timeline
- Technical Approach/Project Scope: Experimental design and work plan, key milestones
- Progress Highlights
- Current Status of Project
- Summary and Ongoing Work

Carbon dioxide emissions in concrete

- >30 B tons of concrete*, >4 billion tons of portland cement (OPC) produced annually**
- 0.9 ton CO₂ emitted per ton OPC produced[†]; from energy input for processing at high temperature (~1600 °C) and CO₂ emitted during calcination

• Hydrated lime is an efficient material for CO_2 uptake (max. CO_2 uptake = <u>59%</u> by mass)

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

*Cement Sustainability Initiative, 2009; **USGS, 2018; †Gartner 2004

DE-FE0029825

Objectives of the *upcycled concrete* technology

Upcycling industrial wastes and CO₂

Utilize coal combustion and metal processing wastes as precursors for scalable
 CO₂ mineralization

Process design

 Develop an integrated, 'bolt-on' technology solution for upcycled concrete production incorporating aspects of Ca-leaching, Ca(OH)₂ precipitation, mixture formulation, and structural shape-stabilization, while maximizing CO₂ uptake

OPC concrete replacement

• Develop a novel CO₂-negative *upcycled concrete* that is performance-equivalent or superior to OPC-based concrete

Overview of CO₂-negative upcycled concrete production process

Advantages of upcycled concrete and considerations

- Reduce construction period with precast/prefabricated components, compared to traditional "cast-in-place" construction, while ensuring repeatability and high quality
- Utilize CO₂ and waste heat in a typical coal-fired power plant (e.g., flue gas, blowdown steam), and reject waste streams (e.g., crystalline slags, non-compliant fly ash in landfills and ash ponds)
- Path to carbon neutral/negative cementation through the production of hydrated lime or portlandite, Ca(OH)₂
- Consider: (1) compositional heterogeneity (leaching/carbonation potential) of fly ash and slag, (2) carbonation kinetics, (3) concrete workability and (4) mechanical properties

Project scope and current status

Key milestones

Milestones		Budget Period 1									Budget Period 3		
		4/1/17 - 6/30/18				7/1/18 - 6/30/19			7/1/19 - 3/31/20				
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	
Leaching rate and extent for 3 slag types													
Uptake 0.06-0.12 g CO ₂ /g solid with blended fly ash and													
Ca(OH) ₂													
Rheology of upcycled concrete (UC) with 3 fly ash-Ca(OH) ₂													
blends													
Shape-stable UC having compressive strength ≥ 15 MPa													
Process design for lab-scale test unit with production													
throughput of 10-100 kg/day UC													
Construction of lab-scale test unit													
Production throughput of 10-100 kg/day UC, with CO ₂ uptake of													
0.06-0.12 g CO ₂ /g solid													
Scalability, lifecycle CO ₂ footprint and techno-economic													
feasibility													
Technology Gap Analysis													

Highlights from BP 1: Low T portlandite synthesis

Highlights from BP1: CO₂ mineralization in mortars

In mortars, the effect of CH content on CO₂ uptake is not a simple linear scaling

Target CO₂ uptake of 6–12% reached at 168 h for mixtures having ≤50% CH containing slag

BP2: Upcycled concrete fabrication and properties-Rheology

- Pastes consist of fly ash, portlandite (mortars consist of silica sand or basic oxygen furnace slag as fine aggregate)
- Water to binder mass ratios (w/b) vary from 0.2–0.5
- High-range water-reducing admixture (SP)
- Retarder used in Class C mixture to control setting
- Vane shear test: Reduction in w/b, increase in sand content increased plastic viscosity; higher yield strength for Class F pastes
- Squeeze test: High shear stress in mortars with 50% sand, and at low w/b
- Extrusion test: Cohesiveness and fluidity

BP2: Upcycled concrete fabrication and properties: Extrudability

- Extrudability criteria defined based on rheological parameters: cohesion (ability to retain water under pressure), yield stress, storage modulus
- Cohesive mixtures with low yield stress unable to hold its weight during extrusion
- Adequate yield stress but low cohesiveness results in high degree of consolidation, thus requiring high extrusion pressure
- The team identified relevant rheological properties and criteria for upcycled concrete mortar formulations that can be shape stabilized by extrusion

BP2: Upcycled concrete fabrication and properties: Strength

- Molding and compaction identified as alternative shape stabilization methods
- Molded portlandite-containing mortars tested for their compressive strength upon carbonation (100% CO₂), achieving ≥ 15 MPa after 7 days
- Compressive strength increased upon carbonation, and with increasing portlandite content (particularly for Class F-containing mortars)
- All Class C mortars had compressive strengths ≥ 15 MPa (target value); ~30% portlandite replacement level needed for Class F mortars

BP2: Upcycled concrete fabrication and properties: Strength

- Molding and compaction identified as alternative shape stabilization methods
- Molded portlandite-containing mortars tested for their compressive strength upon carbonation (100% CO₂), achieving ≥ 15 MPa after 7 days
- Compressive strength increased upon carbonation, and with increasing portlandite content (particularly for Class F-containing mortars)
- All Class C mortars had compressive strengths ≥ 15
 MPa (target value); ~30% portlandite replacement level needed for Class F mortars

Mix ID	Compressive strength at 7 days (MPa)					
	Moist-cured	Carbonated				
MCH0	16.9 (1.1)	19.3 (2.4)				
MCH5	12.0 (1.8)	25.3 (4.1)				
MCH10	27.7 (2.0)	29.3 (1.8)				
MCH15	22.5 (0.2)	22.5 (2.1)				
MFH0	0.4 (0.01)	0.5 (0.1)				
MFH10	6.7 (0.3)	5.9 (0.6)				
MFH20	6.8 (0.7)	9.9 (2.5)				
MFH30	5.0 (0.5)	16.1 (0.4)				

BP2: System design using Aspen Plus – Power consumption

- Steady-state model developed based on mass and energy balances using Aspen Plus
- Leaching is considered as a batch process, NF/RO and precipitation are steady-state processes
- Slag conversion (8.5%) based on experimental data
- Pump efficiency: 15% (lab-scale) or 80% (industrial)
- For a fixed production throughput of 1 kg/day, with increasing precipitation T, precipitation power (\dot{Q}_{pr}) increases and NF/RO retentate flow rate $(\dot{V}_{sln,r})$ decreases
- Increasing [Ca] in retentate decreases both \dot{Q}_{pr} and $\dot{V}_{sln,r}$; \dot{Q}_{pr} dominates energy input

BP2: Process optimization by water recirculation and heat integration

- Case I: Minimize \dot{Q}_{pr} and calculate $\dot{V}_{sln,le}$ at a fixed T_{st}
- Increasing T_{st} to 85 °C decreased water consumption and pumping power, \dot{W}_e , by 50%; Total power, $\dot{E}_{tot}=\dot{Q}_{pr}+\dot{W}_e$ largely unaffected by T_{st}
- Large volumes of water (5–12 m³/day) for 2 kg Ca(OH)₂/day
- Case II: Filtrate after Ca(OH)₂ precipitation and separation ([Ca]>10 mM) recirculated to NF/RO feed
- Reduced water consumption; \dot{W}_e constant for variable T_{st} (lower T_{st} results in higher [Ca] in recirculated water)
- Case III: Heat exchanger for recirculated saturate
- Precipitation power, $\dot{Q}_{pr}=\dot{Q}_{in}+\dot{Q}_{re}$, where \dot{Q}_{in} is the input from a waste heat source and \dot{Q}_{re} is from heat recovery
- Significantly reduced \dot{Q}_{in}

Current status: Building of laboratory-scale system

Demonstration setup at UCLA – In progress...

- General equipment
 - Framing and tubing, safety drain pans
- Leaching precursor: 500 kg basic oxygen furnace slag
- Leaching equipment
 - 1 leaching tank: 45 gal (170 L), 2 buffer tanks: 45 gal,
 1 mixer: 60–2000 rpm, 3 centrifugal pumps
- Leaching instrumentation
 - 2 conductivity meters, 2 pH meters, 2 float level
 switches, 1 data acquisition card, thermocouples
- Membrane filtration equipment
 - 1 reservoir tank: 80 gal (302 L), high pressure pump (up to 320 psi) and controller, variable speed drive

BP3 Task: System construction and evaluation

- Procure required equipment components, and construct a laboratory-scale test system to produce 10–100 kg upcycled concrete/day
- Procure simulated coal-fired power plant flue gas (e.g., $14 + /- 2\% CO_2$, $6.2 + /- 1\% H_2O_2$, $3.4 + /- 0.5\% O_2$, $20-120 \text{ ppm } SO_2$, $75-250 \text{ ppm } NO_x$, $74.5 + /- 2\% N_2$)
- Establish operating procedures and test plan
- Conduct 3 test runs using simulated coal-fired power plant flue gas over 12–24 h
- Produce upcycled concrete with 0.06–0.12 g CO₂/g solids, using the mixture designs and process conditions determined from previous tasks
- Collect and analyze key performance data, including production throughput, CO₂
 uptake, mass flow rate, overall energy consumption

BP3 Task: Final technology assessment

Lifecycle Analysis (LCA)

- Complete an LCA that considers both material and processing aspects
- Optimize the system design (if needed) for minimizing the LCA impacts
- Identify the environmental benefits of upcycled concrete using LCA
- Robustly quantify and deliver the net CO₂ avoidance by upcycled concrete (>75% smaller)

Technology Gap Analysis

- Complete a Technology Gap Analysis: Estimations of the performance, cost, emission, market and safety metrics per NETL's guidelines for carbon utilization and storage technologies
- Establish TRL of critical process components, including portlandite production by leaching and precipitation, CO₂ mineralization, and fabrication
- Analyze and summarize future R&D efforts to close the identified technology gap(s)

Summary and ongoing work

- Upcycled 'CO₂-negative' concrete project utilizes coal combustion and metal processing wastes to develop an integrated technology solution for the production of an OPC concrete replacement, while maximizing CO₂ uptake
- In Year 1, we have demonstrated portlandite synthesis from crystalline slags and CO₂ uptake levels of 6–12% by mass of solid reactants
- In Year 2, we performed rheological characterization of *upcycled concrete* formulations, and process design, including component selection for the laboratory scale demonstration system
- Ongoing work includes the construction of an integrated laboratory-scale upcycled concrete system, demonstration of an integrated process, technology gap analysis, and lifecycle analysis

Acknowledgements

