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H
ighlights

Computationally generated TPMS structures on CAD files

CFD models capturing fluid dynamics for
countercurrent gas/solvent flow in TPMS geometries

 Model validation using random rings packing

Results on hydrodynamics of TPMS geometries 
 Blockage of flow
 Effects of viscosity and liquid flowrate on
interfacial and wetted area

Reactive systems for CO2 absorption on CFD models



Introduction: Triply Periodic Minimal Surfaces (TPMS Structure)
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• Advantages of TPMS
 Improved heat transfer (~10X)
 Separate independent flow 

channels

• For carbon capture
• Mass transfer 

coefficients?
• Mass transfer areas?
• Highly viscous solvent?

• Objective: CFD modeling 
for the gas/solvent flow in 
TPMS

Gyroid Schwarz-P Schwarz-D

3D printed Gyroid
@ LLNL



Introduction: Triply Periodic Minimal Surfaces (TPMS Structure)
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• Mathematical Description
 Gyroid: 𝐹𝐹 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = cos 𝑥𝑥 sin 𝑦𝑦 + cos 𝑦𝑦 sin 𝑧𝑧 + cos 𝑧𝑧 sin 𝑥𝑥 = 0
 Schwarz-P: 𝐹𝐹 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = cos 𝑥𝑥 + cos 𝑦𝑦 + cos 𝑧𝑧 = 0
 Schwarz-D: 𝐹𝐹 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = cos 𝑥𝑥 cos 𝑦𝑦 cos 𝑥𝑥 − sin 𝑥𝑥 sin 𝑦𝑦 sin 𝑧𝑧 = 0
 Offset to create wall surface

 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝐹𝐹 𝑥𝑥 ± 𝑎𝑎𝑥𝑥,𝑦𝑦 ± 𝑎𝑎𝑦𝑦, 𝑧𝑧 ± 𝑎𝑎𝑧𝑧
𝑎𝑎𝑥𝑥 = 𝑡𝑡 𝐹𝐹𝑥𝑥

𝐹𝐹𝑥𝑥2+𝐹𝐹𝑦𝑦2+𝐹𝐹𝑧𝑧2
,𝑎𝑎𝑦𝑦 = 𝑡𝑡 𝐹𝐹𝑦𝑦

𝐹𝐹𝑥𝑥2+𝐹𝐹𝑦𝑦2+𝐹𝐹𝑧𝑧2
, 𝑎𝑎𝑧𝑧 = 𝑡𝑡 𝐹𝐹𝑧𝑧

𝐹𝐹𝑥𝑥2+𝐹𝐹𝑦𝑦2+𝐹𝐹𝑧𝑧2

• Geometrical Parameters

Gyroid Schwarz-P Schwarz-D

Geometry 
size
[cm]

Repeated
Units

Wall 
Thickness

[mm]

Porosity  𝜖𝜖
[%]

Surface
Area 𝐴𝐴𝑝𝑝
[mm2]

Specific Area 
𝑎𝑎𝑝𝑝

[m2/m3]

Hydraulic Diameter 
𝑑𝑑ℎ

[mm]

Gyroid (G) 2x2x2 8 0.45 0.87 4910.08 613.76 5.68
Schwarz-P 

(P) 2x2x2 8 0.49 0.89 3979.04 497.38 7.18

Schwarz-D 
(D) 2x2x2 8 1.30 0.77 2993.04 374.13 8.21



Model Setup: Geometry
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Schwarz-P geometry
− 2cm X 2cm X 2cm
− Periodic in 3 directions 

Geometry Wall

Channel 2

Channel 1

• Two independent channel 
• Self-similar structure

Flow Region

Subtract
Wall



Model Setup: Geometry
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Schwarz-D geometry
− 2cm X 2cm X 2cm
− Periodic in 3 directions 

Geometry Wall

Channel 2

Channel 1

• Two independent channel 
• Self-similar structure

Flow Region

Subtract
Wall



Model Setup: Geometry
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Gyroid geometry
− 2cm X 2cm X 2cm
− Periodic in 3 directions 

Geometry Wall

Channel 2

Channel 1

• Two independent channel 
• Self-similar structure

Flow Region

Subtract
Wall



Model Setup: Gas/solvent Countercurrent Flow
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Boundary conditions
− Periodic for flow
Initial conditions
− Solid initially wrapped with a thin 

layer of film (0.5-1.5mm)
− Initial thickness affects the final 

liquid flow rate
Body force
− Solvent driven by the gravity
− Gas driven by body force 
Computational time
− 96 cores on PNNL PIC HPC
− 7-8 CPU hours for every 1s solution

Initial liquid film 
(0.5mm)

Upward body force 
for gas phasePhysical Properties

Density ρ (kg/m3) 1000
Viscosity µ (cP) 2.5, 5, 10, 25
𝐷𝐷𝐶𝐶𝐶𝐶2[𝑙𝑙] (m2/s) 1.0×10-9

Surface Tension (N/m) 0.065
Contact angle (°) 40

Solvent  Properties (30% MEA)

Physical Properties
Density ρ (kg/m3) 1.184
Viscosity µ (cP) 0.0186
𝐷𝐷𝐶𝐶𝐶𝐶2[𝑔𝑔] (m2/s) 1.0×10-5

Gas  Properties (Air)

− Gas flow rate ~0.33m/s

Solvent driven 
by gravity



Area Definitions 
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Ai: Interfacial Area. Area between Gas and Liquid
Aw: Wetted Area. Area between Solid and Liquid
Ap: Geometrical Area available between Solid and Liquid

Fractional Area: Ai/Ap



Schwarz-P Results-Flow Visualization
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Cross Section 
Visualization

Counter Current Flow Visualization
− Modified Schwarz-P geometry (4 cm)
− Simulation time T=1s
− Liquid Load 
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Schwarz-P Flow Visualization
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𝜇𝜇𝐿𝐿 =2.5 cp 𝜇𝜇𝐿𝐿 =5 cp 𝜇𝜇𝐿𝐿 = 10 cp 𝜇𝜇𝐿𝐿 =25 cp

𝛿𝛿 = 0.1 mm

𝛿𝛿 = 0.5 mm

𝛿𝛿 = 0.8 mm

𝛿𝛿 =1.0 mm

Initial Liquid Film Thickness 𝜹𝜹
0.1, 0.5, 0.8, 1.0 mm

Geometry Size: 
2 cm

Cross-Section View at T=1s



Schwarz-P Flow Visualization
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Initial Liquid Film Thickness 𝜹𝜹
0.2, 0.5, 1, 1.5 1.8 mm

Geometry Size: 
4 cm

𝛿𝛿 = 0.2 mm
𝛼𝛼𝐿𝐿 = 2.3%

𝛿𝛿 = 1.0 mm
𝛼𝛼𝐿𝐿 = 11.69%

𝛿𝛿 = 1.5 mm
𝛼𝛼𝐿𝐿 = 17.53%

𝛿𝛿 = 1.8 mm
𝛼𝛼𝐿𝐿 = 21.03%

𝜇𝜇𝐿𝐿 =2.5 cp 𝜇𝜇𝐿𝐿 =5 cp 𝜇𝜇𝐿𝐿 = 10 cp 𝜇𝜇𝐿𝐿 =25 cp

Cross-Section View at T=1s



Schwarz-P Geometry Size Effect on Flow
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Liquid Void
Fraction 𝛼𝛼𝐿𝐿

5% 10% 15% 20%

2.34% 5.84% 11.69% 21.03%17.53%

2.34% 11.68% 18.70% 23.37%

Viscosity: 𝜇𝜇𝐿𝐿 =2.5 cp, Cross-Section View at T=1s

Geometry Size

2 cm

4cm



Schwarz-P Results and discussion
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Modified Schwarz-P geometry (4 cm)
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Schwarz-P: Effect of Liquid Load on Regimes of Fluid Flow
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Modified Schwarz-P geometry (4 cm)
− Interfacial area and Wetted Area 

Ratio
 Rivulet
 Uniform liquid film
 Wavy film with free streams
 Bulky fluids blockage
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Schwarz-P: Effect of Liquid Load on Fractional Area
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Modified Schwarz-P geometry (4 cm)
− Fractional Area with different Viscosity and liquid load
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Gyroid: Effect of Liquid Load on Fractional Area
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Modified gyroid geometry 
− 4cm X 4cm X 4cm 
− Channel size: ~9 mm
− Surface to volume ratio: 307 1/m
− Viscosity: 2.5, 5, 10, 25 cp

Findings:
− For viscosity <= 5cp, interface area 

increases with flow rate (rivulet flow 
regime)

− For viscosity >=10cp, constant 
interface area (film flow regime)

Interface area varying with 
Solvent flow rate 

0 100 200 300 400

Liquid Load [m
3 /m 2  h]

0

0.2

0.4

0.6

0.8

1

1.2

L
=2.5 cP

L
=5 cP

L
=10 cP

L
=25 cP



Schwarz-D: Effect of Liquid Load on Fractional Area
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Modified Schwarz-D geometry 
− 4cm X 4cm X 4cm 
− Surface to volume ratio: 187 1/m
− Viscosity: 2.5, 10cp
− Share similar trends as discovered in 

Schwarz-P and Gyroid



Hydrodynamic Performance for the three geometries
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Fractional Area Comparison
− 4cm X 4cm X 4cm 
− Viscosity 2.5cp
− Fractional area increases with liquid 

load and then reaches plateau



Dry Packing Pressure Drop
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Boundary conditions
− Horizontal: Periodic for flow
− Bottom: Specified Velocity Inlet
− Top: Pressure Outlet

Single gas phase

Physical Properties
Density 𝜌𝜌𝐺𝐺 (kg/m3) 1.184
Viscosity 𝜇𝜇𝐺𝐺 (cP) 0.0186
𝐷𝐷𝐶𝐶𝐶𝐶2[𝑔𝑔] (m2/s) 1.0×10-5

Gas  Properties (Air)

Intial conditions and Dimensionless number

− Modified Reynolds number: Re = 𝑢𝑢𝐺𝐺𝑑𝑑𝑝𝑝𝜌𝜌𝐺𝐺
1−𝜖𝜖 𝜇𝜇𝐺𝐺

= 3
2
𝑢𝑢𝐺𝐺𝑑𝑑ℎ𝜌𝜌𝐺𝐺
𝜖𝜖𝜇𝜇𝐺𝐺

=[0 2500]

− Superficial gas velocity: 𝑢𝑢𝐺𝐺 = 0 3.5 m/s
− 𝑑𝑑𝑝𝑝 = 6(1 − 𝜖𝜖)/𝑎𝑎𝑝𝑝: particle diameter (analogy to random/structure packing)
− 𝑑𝑑ℎ = 4𝜖𝜖/𝑎𝑎𝑝𝑝: hydraulic dimeter of Packing



Dry Packing Pressure Drop
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Gyroid Ergun Equation:
𝜓𝜓 = 150

𝑅𝑅𝑜𝑜
+ 1.75

Pressure Drop and Resistance Coefficient

− Pressure Drop:  ∆𝑝𝑝
∆𝐻𝐻

= 𝜆𝜆 �𝑢𝑢𝐺𝐺
2𝜌𝜌𝐺𝐺
2𝑑𝑑ℎ

= 𝜓𝜓 1−𝜖𝜖
𝜖𝜖3

𝐹𝐹𝑉𝑉
2

𝑑𝑑𝑝𝑝
,        Resistant Coefficient: 𝜓𝜓 = 𝑑𝑑𝑝𝑝𝜖𝜖3

1−𝜖𝜖

∆𝑝𝑝
∆𝐻𝐻
𝐹𝐹𝑉𝑉
2 ,   (𝐹𝐹𝑉𝑉= 𝑢𝑢𝐺𝐺 𝜌𝜌𝐺𝐺)

Pressure Drop
Schwarz-P<Schwarz-D<Gyroid

Resistant Coefficient (Re>500)
Schwarz-P< Gyroid<Schwarz-D

Zhijie Xu
Jie Bao, 
Chao Wang, 
Yucheng Fu



Mass transfer in Schwarz-D

Simulation specifications

• Domain size: 1 cm x 1 cm x 4 cm
• 1 x 1 x 4 unit cells
• Convection-diffusion problem
• Pressure driven flow along the length 

of channel
• Periodic boundary conditions in other 

directions
• Uniform concentration at the walls

Joshuah Stolaroff
Pratanu Roy
Jaisree Iyer Kannan
Du Thai Nguyen 



Velocity and concentration profiles
in Schwarz-D structure
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SchwarzD: Sh and Re correlations

Sh = kDh/D

Sc = 𝜈𝜈/D

Sh = Sherwood Number
Sc = Schmidt Number
D = Diffusivity
Dh = Hydraulic diameter
𝜈𝜈 = Kinematic viscosity
k = Mass transfer coefficient

For uniform wall 
concentration in a pipe flow  
Sh is constant (=3.66), and 
is not a function of Re. 

Since the boundary layer is 
disrupted continuously in 
Schwarz-D structure, the Sh
changes with Re and Sc. 



Development of COMSOL model for carbonate-based carbon 
capture system

• Benchmark model for comparison against experiment

• Model simplifications:
– 2-D instead of 3-D
– No flux at all external faces except for the flow faces
– Gas average velocity reduced to 1.7 m/s from 16.67 m/s (1 L/min) to maintain 

laminar flow

1 mm

1 mm

1 mm

50 μm
40.034 mol/m3 CO2 gas
(v=1.7 m/s) 

2.87 mol/m3 K2CO3
solution
(v = 0.01 m/s) x

y

z

50 mm

𝐶𝐶𝑂𝑂2 + 𝑂𝑂𝐻𝐻− ↔ 𝐻𝐻𝐶𝐶𝑂𝑂3−
𝐻𝐻𝐶𝐶𝑂𝑂3− + 𝑂𝑂𝐻𝐻− ↔ 𝐶𝐶𝑂𝑂32− + 𝐻𝐻2𝑂𝑂

𝐻𝐻2𝑂𝑂 ↔ 𝐻𝐻+ + 𝑂𝑂𝐻𝐻−



Spatial and temporal variation of the pH

• It takes about 10 s to reach steady state with a pH change of approximately 1
• Fast reactions had to be slowed down to obtain convergence

• Could have resulted in inaccuracies

9.8
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0 10 20 30 40 50

pH

Distance from the liquid inlet of the reactor (mm)

t=0 s
t=2 s
t=4 s
t=6 s
t=8 s
t=10 s
steady state

Steady state pH in the liquid domain pH along the centerline of the liquid domain

𝑥𝑥

𝑦𝑦



Steady state CO2 concentration (mol/m3)

• Concentration in the gas 
domain doesn’t change 
significantly due to the high 
velocity

• CO2 concentration in the 
liquid domain sees large 
changes near the membrane 
but remains unchanged away 
from it

𝑥𝑥

𝑦𝑦



Velocity in the gas and liquid domain (m/s)

• Liquid velocity is significantly lower than the gas velocity and is plotted on a 
different color scale

𝑥𝑥

𝑦𝑦 GasLiquid GasLiquid

𝑥𝑥

𝑦𝑦



Perturb the gyroid
geometry in a 
mathematically 
driven way in order to 
improve performance

Moving Forward

Develop a CFD 
framework that can 
be efficiently 
integrated with the 
ML, optimization and 
CAD software tools

Develop a CFD 
framework that can cope 
with the complexities of 
the setup in terms of:
• Multiphase flow with 

varying physics. i.e
Turbulence, 
rivulet/waves, blockage

• Chemical reaction of 
absorption 

• Heat transfer
• Parametrization of the 

geometry

Machine learning and 
optimization 
approaches to design 
computational 
experiments for data 
generation

Manufacture through 
3D printing a 
geometry to calibrate 
model and validate 
computational and 
theoretical work 
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Carbon Capture Simulation for Industry Impact (CCSI2)



For more information
https://www.acceleratecarboncapture.org/
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