

Novel Geometry Design for Intensified CO₂ Absorbers

Grigorios Panagakos, Research Engineer Carnegie Mellon University-LRST National Energy Technology Laboratory

Computationally generated TPMS structures on CAD files

CFD models capturing fluid dynamics for countercurrent gas/solvent flow in TPMS geometries

Model validation using random rings packing

Results on hydrodynamics of TPMS geometries
➢ Blockage of flow
➢ Effects of viscosity and liquid flowrate on interfacial and wetted area

Reactive systems for CO_2 absorption on CFD models

Highlights

Lawrence Livermore National Laboratory

Introduction: Triply Periodic Minimal Surfaces (TPMS Structure)

Advantages of TPMS

- Improved heat transfer (~10X)
- Separate independent flow channels
- For carbon capture
 - Mass transfer coefficients?
 - Mass transfer areas?
 - Highly viscous solvent?
- Objective: CFD modeling for the gas/solvent flow in TPMS

Los Alamos

3D printed Gyroid @ LLNL

Lawrence Livermore National Laboratory

₩ West Virginia University

Introduction: Triply Periodic Minimal Surfaces (TPMS Structure)

Schwarz-D

NT O

Schwarz-P

Gyroid

Mathematical Description

- Gyroid: $F(x, y, z) = \cos(x) \sin(y) + \cos(y) \sin(z) + \cos(z) \sin(x) = 0$
- Schwarz-P: $F(x, y, z) = \cos(x) + \cos(y) + \cos(z) = 0$
- Schwarz-D: $F(x, y, z) = \cos(x) \cos(y) \cos(x) \sin(x) \sin(y) \sin(z) = 0$
- Offset to create wall surface

•
$$F_{offset}(x, y, z) = F(x \pm a_x, y \pm a_y, z \pm a_z)$$

 $a_x = t \frac{F_x}{\sqrt{F_x^2 + F_y^2 + F_z^2}}, a_y = t \frac{F_y}{\sqrt{F_x^2 + F_y^2 + F_z^2}}, a_z = t \frac{F_z}{\sqrt{F_x^2 + F_y^2 + F_z^2}}$

Geometrical Parameters

	Geometry size [cm]	Repeated Units	Wall Thickness [mm]	Porosity ([%]	€ Surface Area A _p [mm ²]	Specific Area a_p [m²/m³]	Hydraulic Diameter d _h [mm]
Gyroid (G)	2x2x2	8	0.45	0.87	4910.08	613.76	5.68
Schwarz-P (P)	2x2x2	8	0.49	0.89	3979.04	497.38	7.18
Schwarz-D (D)	2x2x2	8	1.30	0.77	2993.04	374.13	8.21
CCCSI Carbon Capture Simulation for	2	NATIONAL ENERGY TECHNOLOGY LABORATORY		ence Livermore nal Laboratory	Los Alamos NATIONAL LABORATORY BET 194	₩estVırginiaUniversit	

Model Setup: Geometry

Schwarz-P geometry

- 2cm X 2cm X 2cm

Geometry Wall

NATIONAL ENERGY TECHNOLOGY

CCI²

Carbon Capture Simulation for Industry Impact

- Periodic in 3 directions
- Two independent channel

Flow Region

Los Alamos

Pacific Northwest

LABORATORY

Lawrence Livermore National Laboratory

• Self-similar structure

Subtract

Wall

.....

Channel 1

Channel 2

DEPARTMENT O

THE UNIVERSITY OF

TEXA

WestVirginiaUniversity,

/

5

Model Setup: Geometry

Schwarz-D geometry

- 2cm X 2cm X 2cm

Geometry Wall

NATIONAL ENERGY TECHNOLOGY

 $(CS)^2$

Carbon Capture Simulation for Industry Impact

- Periodic in 3 directions
- Two independent channel

Flow Region

Los Alamos

Pacific Northwest

LABORATORY

Lawrence Livermore National Laboratory

• Self-similar structure

Subtract

Wall

rrrrr

Channel 2

U.S. DEPARTMENT OF

NER

THE UNIVERSITY OF

ΤΕΧΑ

WestVirginiaUniversity.

Model Setup: Geometry

Gyroid geometry

- 2cm X 2cm X 2cm

Geometry Wall

NATIONAL ENERGY TECHNOLOGY

CCSI²

Carbon Capture Simulation for Industry Impact

- Periodic in 3 directions
- Two independent channel
- Self-similar structure

Subtract

Wall

.....

Channel 1

Channel 2

U.S. DEPARTMENT OF

NER

THE UNIVERSITY OF

ΤΕΧΑ

WestVirginiaUniversity,

Flow Region

Pacific Northwest

> ATIONAL LABORATORY

Model Setup: Gas/solvent Countercurrent Flow

Solvent Properties (20% MEA)

Boundary conditions

Periodic for flow

Initial conditions

- Solid initially wrapped with a thin layer of film (0.5-1.5mm)
- Initial thickness affects the final liquid flow rate

Body force

- Solvent driven by the gravity
- Gas driven by body force

Computational time

- 96 cores on PNNL PIC HPC
- 7-8 CPU hours for every 1s solution
- Gas flow rate ~0.33m/s

Solvent Flopenties (3070 MLA)					
Physical Properties					
Density $ ho$ (kg/m ³)	1000				
Viscosity μ (cP)	2.5, 5, 10, 25				
$D_{CO_2}[l]$ (m ² /s)	1.0×10 ⁻⁹				
Surface Tension (N/m)	0.065				
Contact angle (°)	40				

Gas Properties (Air)

Physical Properties					
Density $ ho$ (kg/m ³)	1.184				
Viscosity μ (cP)	0.0186				
$D_{CO_2}[g]$ (m ² /s)	1.0×10 ⁻⁵				

Los Alamos

Lawrence Livermore National Laboratory

THE UNIVERSITY OF

TEXA

WestVirginiaUniversity,

Area Definitions

Schwarz-P Results-Flow Visualization

Counter Current Flow Visualization

- Modified Schwarz-P geometry (4 cm)
- Simulation time T=1s
- Liquid Load

Cross Section Visualization

Schwarz-P Results-Flow Visualization

Counter Current Flow Visualization

- Modified Schwarz-P geometry (4 cm)
- Simulation time T=1s
- Liquid Load

Cross Section Visualization

Schwarz-P Results-Flow Visualization

Counter Current Flow Visualization

- Modified Schwarz-P geometry (4 cm)
- Simulation time T=1s
- Liquid Load

Cross Section Visualization

Schwarz-P Flow Visualization

Schwarz-P Flow Visualization

Schwarz-P Geometry Size Effect on Flow

Schwarz-P Results and discussion

Modified Schwarz-P geometry (4 cm)

Wetted Area with Various Liquid Load

Schwarz-P: Effect of Liquid Load on Regimes of Fluid Flow

Schwarz-P: Effect of Liquid Load on Fractional Area

Modified Schwarz-P geometry (4 cm)

- Fractional Area with different Viscosity and liquid load

Gyroid: Effect of Liquid Load on Fractional Area

Lawrence Livermore

Modified gyroid geometry

- 4cm X 4cm X 4cm
- Channel size: ~9 mm
- Surface to volume ratio: 307 1/m
- Viscosity: 2.5, 5, 10, 25 cp

Findings:

- For viscosity <= 5cp, interface area increases with flow rate (rivulet flow regime)
- For viscosity >=10cp, constant interface area (film flow regime)

WestVirginiaUniversity.

Schwarz-D: Effect of Liquid Load on Fractional Area

Modified Schwarz-D geometry

- 4cm X 4cm X 4cm
- Surface to volume ratio: 187 1/m
- Viscosity: 2.5, 10cp
- Share similar trends as discovered in Schwarz-P and Gyroid

Hydrodynamic Performance for the three geometries

Fractional Area Comparison

- 4cm X 4cm X 4cm
- Viscosity 2.5cp
- Fractional area increases with liquid load and then reaches plateau

Dry Packing Pressure Drop

WestVirginiaUniversity,

Lawrence Livermore National Laboratory

Dry Packing Pressure Drop

Pressure Drop and Resistance Coefficient

Mass transfer in Schwarz-D

Simulation specifications

- Domain size: 1 cm x 1 cm x 4 cm
- 1 x 1 x 4 unit cells
- Convection-diffusion problem
- Pressure driven flow along the length of channel
- Periodic boundary conditions in other directions
- Uniform concentration at the walls

Joshuah Stolaroff Pratanu Roy Jaisree Iyer Kannan Du Thai Nguyen

Velocity and concentration profiles in Schwarz-D structure

Velocity and concentration profiles in Schwarz-D structure

Velocity and concentration profiles in Schwarz-D structure

SchwarzD: Sh and Re correlations

Development of COMSOL model for carbonate-based carbon

Capture system Benchmark model for comparison against experiment

- 2-D instead of 3-D
- No flux at all external faces except for the flow faces

Lawrence Livermore National Laboratory

- Gas average velocity reduced to 1.7 m/s from 16.67 m/s (1 L/min) to maintain laminar flow

THE UNIVERSITY OF

WestVirginiaUniversity

Spatial and temporal variation of the pH

It takes about 10 s to reach steady state with a pH change of approximately 1

THE UNIVERSITY OF

TEXAS

WestVirginiaUniversity,

Pacific Northwest

Los Alamos

• Fast reactions had to be slowed down to obtain convergence

Could have resulted in inaccuracies

Steady state CO₂ concentration (mol/m³)

 \mathcal{S}

- Concentration in the gas domain doesn't change significantly due to the high velocity
- CO_2 concentration in the liquid domain sees large changes near the membrane but remains unchanged away from it

Velocity in the gas and liquid domain (m/s)

Moving Forward

Perturb the gyroid geometry in a mathematically driven way in order to improve performance Develop a CFD I framework that can fi be efficiently w integrated with the t ML, optimization and • CAD software tools

Develop a CFD framework that can cope with the complexities of the setup in terms of:

- Multiphase flow with varying physics. i.e Turbulence, rivulet/waves, blockage
- Chemical reaction of absorption
- Heat transfer

Lawrence Livermore

National Labor

• Parametrization of the geometry

Los Alamos

Pacific

Northwest

Machine learning and optimization approaches to design computational experiments for data generation

WestVirginiaUniversity,

THE UNIVERSITY OF

TEXAS

Manufacture through 3D printing a geometry to calibrate model and validate computational and theoretical work

Acknowledgments

Carbon Capture Simulation for Industry Impact (CCSI²)

PNNL: Zhijie Xu, Charlie Freeman, David Heldebrant, Richard Zheng, Rajesh Singh, Jie Bao, Chao Wang, Yucheng Fu

LLNL: Joshuah Stolaroff, Pratanu Roy, Du Thai Nguyen, Jaisree Iyer Kannan, Brenda Ng, Charles Tong, Wenqin Li

NETL: Michael Matuszewski, Benjamin Omell, Joshua Morgan, Grigorios Panagakos

UT Austin: Gary Rochelle

Disclaimer: This work is made available as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

For more information <u>https://www.acceleratecarboncapture.org/</u>

Grigorios Panagakos, Research Engineer Carnegie Mellon University-NETL <u>gpanagak@nandrew.cmu.edu</u> <u>Grigorios.Panagakos@netl.doe.gov</u>

