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Additively Manufactured Intensified Device for Enhanced

Carbon Capture by Monoethanolamine
Background: Temperature Bulge of Liquid

Occurs as a result of the exothermic
reaction of CO, with MEA

The location of the temperature bulge
depends on the solvent-to-gas ratio

The T bulge as well as L/G can
significantly affect the removal rate

The location of where to provide the
cooling is not obvious
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Motivation-New Subtask

 Hypothesis

— Optimization of heat removal could promote more CO, absorption but tradeoff between capital
and operating cost must be taken into consideration

« Background

— Current capture equipment design: Decoupled unit operations with mass transfer and heat
transfer

— Decoupled stages with external cooling
 Objective (3years)
— Provide computational and theoretical tools to assist the development, prototyping and
validation of enhanced CO, capture with intercooled/intensified devices

— Develop new computational framework to
» Understand the effect of operating conditions and material properties on system performance
» parameterize geometry and programmatically update CFD model

— Investigate the effect of geometry through detailed CFD modeling
— Develop Framework to link CFD, process modeling and performance optimization
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Process Modeling

Absorber Model cw

3

e Carbon Capture model developed Clean flue gas —»co,

by the CCSI team!-2for

monoethanolamine (MEA). cw
« Model tested to be accurate at the I 4—@ P e > Purge

NCCC and TCM “@— < i
« Model includes mass transfer, o e [0 b

heat transfer, vapor-liquid '”‘er°°°'_e*®

equilibrium, and chemistry of the == 5

MEA'HZO'COZ SyStem Flue gas —————» ‘@Steam

\I: Condensate

[1] A. Soares Chinen, J. C. Morgan, B. Omell, D. Bhattacharyya, C. Tong, and D. C. Miller, “Development of a Rigorous Modeling Framework for Solvent-Based CO2 Capture. 1. Hydraulic and Mass Transfer
Models and Their Uncertainty Quantification,” Ind. Eng. Chem. Res., vol. 57, no. 31, pp. 10448-10463, Aug. 2018.

[2] J. C. Morgan et al., “Development of a Rigorous Modeling Framework for Solvent-Based CO2 Capture. Part 2: Steady-State Validation and Uncertainty Quantification with Pilot Plant Data,” Ind. Eng.
Chem. Res., vol. 57, no. 31, pp. 10464-10481, Aug. 2018.

[3] Debangsu Bhattacharyyal and David C Miller , Post-combustion CO2 capture technologies — a review of processes for solvent-based and sorbent-based CO2 capture, Chemical Engineering 2017,
17:78-92
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Implementation of Embedded Cooling
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« Adaptable to multiple
active/inactive cooling
sections

 Co-current or counter-
current flow

J.C. Morgan et al., Development of a Rigorous Modeling Framework for
Solvent-Based CO2 Capture. Part 2: Steady-State Validation and Uncertainty
Quantification with Pilot Plant Data, Ind. Eng. Chem. Res. 2018, 57,
10464-10481
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Preliminary Modeling Work Il

 Investigating the trade-off between increase in absorption performance and
the increase in equipment size

 Geometry of shell and tube type heat exchanger used to relate heat transfer
area to increase in absorber size
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How do you solve physics problems?

Fridolin Okkels and Henrik Bruus, Scaling behavior of optimally structured catalytic microfluidic reactors, Physical Review E 75, 016301 2007
L.H. Olesen et al. A high-level programming-language implementation of topology optimization applied to steady-state Navier—Stokes flow, Int. J. Numer. Meth. Engng 2006; 65:975-1001
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How do you solve physics problems?

Model Solver Solution
) ? ?

Fridolin Okkels and Henrik Bruus, Scaling behavior of optimally structured catalytic microfluidic reactors, Physical Review E 75, 016301 2007
L.H. Olesen et al. A high-level programming-language implementation of topology optimization applied to steady-state Navier—Stokes flow, Int. J. Numer. Meth. Engng 2006; 65:975-1001
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How do you solve physics problems?

Governing Eg.+ Constitutive Laws  coMSOL u,v,p,c
+ Setup + BC
Model Solver Solution
? ? ?
n n

Fridolin Okkels and Henrik Bruus, Scaling behavior of optimally structured catalytic microfluidic reactors, Physical Review E 75, 016301 2007
L.H. Olesen et al. A high-level programming-language implementation of topology optimization applied to steady-state Navier—Stokes flow, Int. J. Numer. Meth. Engng 2006; 65:975-1001
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How do you solve physics problems?

Governing Eg.+ Constitutive Laws  coMSOL u,v,p,c
+ Setup + BC
Model Solver Solution
? ? ?
n n

e.g. NS + CDR+ BC + Goal TOPOPT Best design

Fridolin Okkels and Henrik Bruus, Scaling behavior of optimally structured catalytic microfluidic reactors, Physical Review E 75, 016301 2007
L.H. Olesen et al. A high-level programming-language implementation of topology optimization applied to steady-state Navier—Stokes flow, Int. J. Numer. Meth. Engng 2006; 65:975-1001
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How,go you solve physics problems?
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Governing Eg.+ Constitutive Laws  coMSOL u,v,p,c
+ Setup + BC
Model Solver Solution
? ? ?
n n

e.g. NS + CDR+ BC + Goal TOPOPT Best design

Fridolin Okkels and Henrik Bruus, Scaling behavior of optimally structured catalytic microfluidic reactors, Physical Review E 75, 016301 2007
L.H. Olesen et al. A high-level programming-language implementation of topology optimization applied to steady-state Navier—Stokes flow, Int. J. Numer. Meth. Engng 2006; 65:975-1001
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Fundamentals of Topology Optimization

125L Designable Domain 2 oL

10L *

y=0, Solid
Y: 1 ) VO i d M.P.Bendsge and O. Sigmund,

Topology Optimization - Theory,
Methods and Applications,
Springer (2003)
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Topology Optimization in Aircraft Design

“...Airbus researches use of topology
optimization on aircraft wing ribs.

It is stated that usage of topology
optimization results in around 1000 kg of
weight savings per aircratft...”

https://topologyoptimization.wordpress.com/2011/03/11/airbus/

Figure 5.a. Topology optimization design space for 2D airfoil test case.

W

Figure 5.b Topology optimization results for simple 2I» airfoil test case,

51
AN

Figure 7. 3D printed wing section for a NACA 23015 airfoil.

D. Walker et al. Topology Optimization of an Aircraft Wing, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
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Fundamentals of Optimization Problems

e Optimization Problem = Inverse Problem

Tune the design-variables (y) of a problem, such that
an objective function (®) is minimized, under given

5 U.S. DEPARTMENT OF

constrains.
= Design variables: ,}/(H u[fy]
— 7
Y
< Obijective function: min P (u["}/], "}/) ()]
/7
- Constrains: g(u["}/], ")/) < 0
0<~(r)<1
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Mathematical Formulation of the PDE problem

We can use the software package COMSOL to solve the reacting flow problem.
Requires Partial Differential EQuations to be expressed in divergence form

_ o011 _ o012 {0 —J4
F st I“: F: —
R Vo R R

Fr=p(v-V)vu+avy, FBh=p(v-Vvet+avy, F3=V-v F,=v-Vc+R

Then the V.-TI;, =F; in €,
reacting flow
problem can R, =0 3 op on Jf2,  Dirichlet b.c.
A . j ¢
be written as:  _n.T, =G, + Z L on 9,  Neumann b.c.
j=1 "
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The Finite Element Method (FEM)

* Expand both u and y on a finite basis set

’U;z(I') - Z ui,n (/Oi,n(r) ﬁf’(r) — Z Tn @—ln(r)

Finite element mesh;
« Use P1 basis for p(r), c(r) and y(r) basis function ¢ has small support

» Use P2 basis for u(r)
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Constrained optimization problem

e Minimize objective function ®(u) subject to constraints

min ¢(u,~)
Y

subject to / y(r)c
Q

Volume constraint

0 < ~(r) <1, Design variable bounds
V.-TI',=F,. Governing equations
R, =0, Dirichlet b.e.

—n-I', =G; + E prj.  Neuwmann b.c.
()ti3
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Setup and procedure for micro-reactor
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Setup and procedure for micro-reactor
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Setup and procedure for micro-reactor
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Topology Optimized Micro-Reactors

Characteristic Examples
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Topology Optimized Micro-Reactors

e Characteristic Examples

Surface: Velocity magnitude (m/s) x10°
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Partnership with ORNL and WVU

NETL WVU
Local Information- High fidelity Process modeling
CFD

Performance

Optimization

= Models and numerical
campaign to inform
experimental work

= Experimental campaign to
collect data to improve
models

ORNL
Experimentation, manufacturing and testing
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Moving Forward

MEA+Mellapak MEA+Intensified Develop CFD » Improve process » Calibrate model
equivalent, to reactor Goal: framework to simulate model in terms of and validate
match literature 1mprove packing » Multiphase flow Coolant model and computational and
performance with in situ » Chemical reactions 1mproved discrete theoretical work
continuous cooling » Thermal coupling or continuous against actual 3D
(absorber) and between chemistry design of cooling printed structured
heating (stripper) and fluid flow on locations packing
limiting mechanisms » Link CFD with
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