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Additively Manufactured Intensified Device for Enhanced 
Carbon Capture by Monoethanolamine

Background: Temperature Bulge of Liquid
• Occurs as a result of the exothermic 

reaction of CO2 with MEA

• The location of the temperature bulge 
depends on the solvent-to-gas ratio

• The T bulge as well as L/G can 
significantly affect the removal rate

• The location of where to provide the 
cooling is not obvious 

(Kvaamsdal & Rochelle, 2008)
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Motivation-New Subtask
• Hypothesis

– Optimization of heat removal could promote more CO2 absorption but tradeoff between capital
and operating cost must be taken into consideration

• Background
– Current capture equipment design: Decoupled unit operations with mass transfer and heat

transfer
– Decoupled stages with external cooling

• Objective (3years)
– Provide computational and theoretical tools to assist the development, prototyping and

validation of enhanced CO2 capture with intercooled/intensified devices
– Develop new computational framework to

• Understand the effect of operating conditions and material properties on system performance
• parameterize geometry and  programmatically update CFD model

– Investigate the effect of geometry through detailed CFD modeling
– Develop Framework to link CFD, process modeling and performance optimization



Absorber Model
• Carbon Capture model developed

by the CCSI team1,2 for
monoethanolamine (MEA).

• Model tested to be accurate at the
NCCC and TCM

• Model includes mass transfer,
heat transfer, vapor-liquid
equilibrium, and chemistry of the
MEA-H2O-CO2 system

Process Modeling
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[1] A. Soares Chinen, J. C. Morgan, B. Omell, D. Bhattacharyya, C. Tong, and D. C. Miller, “Development of a Rigorous Modeling Framework for Solvent-Based CO2 Capture. 1. Hydraulic and Mass Transfer
Models and Their Uncertainty Quantification,” Ind. Eng. Chem. Res., vol. 57, no. 31, pp. 10448–10463, Aug. 2018.
[2] J. C. Morgan et al., “Development of a Rigorous Modeling Framework for Solvent-Based CO2 Capture. Part 2: Steady-State Validation and Uncertainty Quantification with Pilot Plant Data,” Ind. Eng.
Chem. Res., vol. 57, no. 31, pp. 10464–10481, Aug. 2018.
[3] Debangsu Bhattacharyya1 and David C Miller , Post-combustion CO2 capture technologies — a review of processes for solvent-based and sorbent-based CO2 capture, Chemical Engineering 2017,
17:78–92
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Implementation of Embedded Cooling
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• Adaptable to multiple
active/inactive cooling
sections

• Co-current or counter-
current flow

3 Active Sections 5 Active Sections

2 Active Sections

J.C. Morgan et al., Development of a Rigorous Modeling Framework for
Solvent-Based CO2 Capture. Part 2: Steady-State Validation and Uncertainty
Quantification with Pilot Plant Data, Ind. Eng. Chem. Res. 2018, 57,
10464−10481



• Investigating the trade-off between increase in absorption performance and
the increase in equipment size

• Geometry of shell and tube type heat exchanger used to relate heat transfer
area to increase in absorber size

Preliminary Modeling Work II
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• Investigating the trade-off between increase in absorption performance and
the increase in equipment size

• Geometry of shell and tube type heat exchanger used to relate heat transfer
area to increase in absorber size

Preliminary Modeling Work II
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How do you solve physics problems?

? ??

Fridolin Okkels and Henrik Bruus, Scaling behavior of optimally structured catalytic microfluidic reactors, Physical Review E 75, 016301 2007
L.H. Olesen et al. A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow, Int. J. Numer. Meth. Engng 2006; 65:975–1001
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Fundamentals of Topology Optimization

M.P.Bendsøe and O. Sigmund, 
Topology Optimization - Theory, 
Methods and Applications, 
Springer (2003)

γ=0, Solid
γ=1, Void



Topology Optimization in Aircraft Design

D. Walker et al.  Topology Optimization of an Aircraft Wing, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

“…Airbus researches use of topology 
optimization on aircraft wing ribs. 
It is stated that usage of topology 
optimization results in around 1000 kg of 
weight savings per aircraft…”

https://topologyoptimization.wordpress.com/2011/03/11/airbus/   



• Optimization Problem = Inverse Problem

Fundamentals of Optimization Problems

Tune the design-variables (γ) of a problem, such that 
an objective function (Φ) is minimized, under given 
constrains.

• Design variables:  →

• Objective function:

• Constrains:

u[γ]γ →

Φ



Mathematical Formulation of the PDE problem

Dirichlet b.c.

Neumann b.c.

𝚪𝚪4 ≡
−𝐽𝐽1
−𝐽𝐽2

𝐹𝐹4 ≡ 𝒗𝒗 � 𝛻𝛻𝑐𝑐 + 𝑅𝑅

We can use the software package COMSOL to solve the reacting flow problem.
Requires Partial Differential Equations to be expressed in divergence form

Then the 
reacting flow 
problem can 
be written as:



The Finite Element Method (FEM)

• Expand both u and γ on a finite basis set

• Use P1 basis for p(r), c(r) and γ(r)

• Use P2 basis for u(r)

Finite element mesh; 
basis function ϕj has small support



• Minimize objective function Φ(u) subject to constraints

Constrained optimization problem



Setup and procedure for micro-reactor



Setup and procedure for micro-reactor

COMSOL GUI

Modeling



Setup and procedure for micro-reactor

COMSOL GUI

Modeling

COMSOL Script

MMA.m
(MATLAB)

Adj-Pr.m

TOPOPT.m

Method

L.H. Olesen, F. Okkels, og H. Bruus,   Int. J. Num. Meth. Eng. 65, 975 (2006)



Setup and procedure for micro-reactor

COMSOL GUI

Modeling

COMSOL Script

MMA.m
(MATLAB)

Adj-Pr.m

TOPOPT.m

Method

L.H. Olesen, F. Okkels, og H. Bruus,   Int. J. Num. Meth. Eng. 65, 975 (2006)

COMSOL Script
COMSOL/MATLAB

Visualization/Analysis

General export



• Characteristic Examples

Topology Optimized Micro-Reactors

𝐃𝐃𝐃𝐃 = 𝟏𝟏𝟏𝟏−𝟓𝟓,𝐃𝐃 = 𝟏𝟏 � 𝟏𝟏𝟏𝟏−𝟖𝟖
𝐦𝐦𝟐𝟐

𝐬𝐬 ,𝐝𝐝𝐝𝐝 = 𝟏𝟏.𝟓𝟓 𝐏𝐏𝐃𝐃,𝐤𝐤𝐃𝐃 = 𝟏𝟏𝐃𝐃𝐃𝐃 = 𝟏𝟏𝟏𝟏−𝟓𝟓,𝐃𝐃 = 𝟏𝟏 � 𝟏𝟏𝟏𝟏−𝟖𝟖
𝐦𝐦𝟐𝟐

𝐬𝐬 ,𝐝𝐝𝐝𝐝 = 𝟏𝟏.𝟏𝟏 𝐏𝐏𝐃𝐃,𝐤𝐤𝐃𝐃 = 𝟏𝟏

Iter=227Iter=188



• Characteristic Examples

Topology Optimized Micro-Reactors

𝐃𝐃𝐃𝐃 = 𝟏𝟏𝟏𝟏−𝟓𝟓,𝐃𝐃 = 𝟏𝟏 � 𝟏𝟏𝟏𝟏−𝟖𝟖
𝐦𝐦𝟐𝟐

𝐬𝐬 ,𝐝𝐝𝐝𝐝 = 𝟏𝟏.𝟓𝟓 𝐏𝐏𝐃𝐃,𝐤𝐤𝐃𝐃 = 𝟏𝟏𝐃𝐃𝐃𝐃 = 𝟏𝟏𝟏𝟏−𝟓𝟓,𝐃𝐃 = 𝟏𝟏 � 𝟏𝟏𝟏𝟏−𝟖𝟖
𝐦𝐦𝟐𝟐

𝐬𝐬 ,𝐝𝐝𝐝𝐝 = 𝟏𝟏.𝟓𝟓 𝐏𝐏𝐃𝐃,𝐤𝐤𝐃𝐃 = 𝟏𝟏.𝟐𝟐𝟓𝟓

Iter=227Iter=121



NETL
Local Information- High fidelity 

CFD

ORNL
Experimentation, manufacturing and testing

WVU
Process modeling 

Performance 
Optimization

 Models and numerical
campaign  to inform
experimental work

 Experimental campaign to
collect data to improve
models

Partnership with ORNL and WVU 
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Moving Forward
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 Improve process
model in terms of
Coolant model and
improved discrete
or continuous
design of cooling
locations

 Link CFD with
Process Modeling

 Study Process
economics

MEA+Intensified
reactor Goal: 
improve packing 
with in situ 
continuous cooling 
(absorber) and 
heating (stripper)

Develop CFD 
framework to simulate
 Multiphase flow
 Chemical reactions
 Thermal coupling 

between chemistry 
and fluid flow on 
limiting mechanisms

 Packing
 Fluid properties
 Operating conditions 

MEA+Mellapak
equivalent, to 
match literature 
performance

 Calibrate model
and validate
computational and
theoretical work
against actual 3D
printed structured
packing
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For more information
https://www.acceleratecarboncapture.org/
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