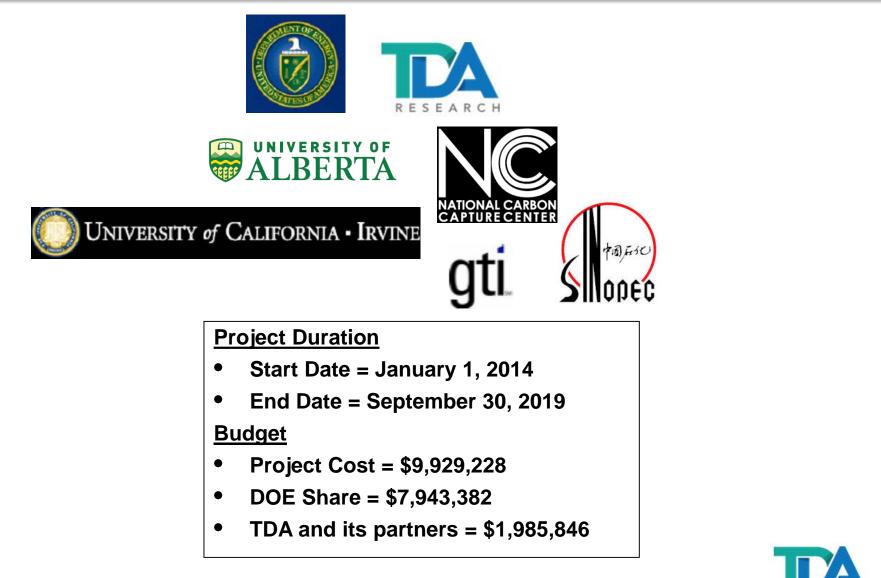
Pilot Testing of a Highly Efficient Pre-combustion Sorbent-based Carbon Capture System (Contract No. DE-FE-0013105)

Gökhan Alptekin, PhD Ambal Jayaraman, PhD Matt Cates Mike Bonnema David Gribble Jim Dippo

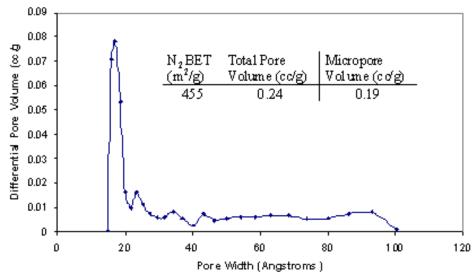
2018 DOE/NETL CO₂ Capture Technology Meeting

August 15, 2018


TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Summary

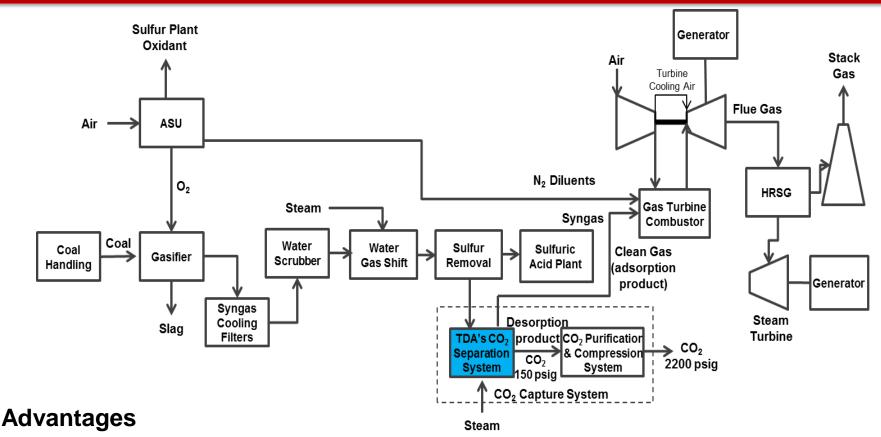
- The objective is to develop a new sorbent-based pre-combustion capture technology for Integrated Gasification Combined Cycle (IGCC) power plants
- Demonstrate techno-economic viability of the new technology by:
 - 1) Evaluating technical feasibility in 0.1 MW_e slipstream tests
 - 2) Carrying out high fidelity process design and engineering analysis
- Major Project Tasks
 - Sorbent Manufacturing
 - Performance validation via long-term cycling tests
 - Reactor Design
 - CFD Analysis and PSA cycle optimization with adsorption modeling
 - Fabricate a Pilot-scale Prototype for Demonstration
 - Evaluations at various sites using coal-derived synthesis gas
 - Techno-economic analysis
 - High fidelity engineering analysis and process simulation



Project Partners

TDA's Approach

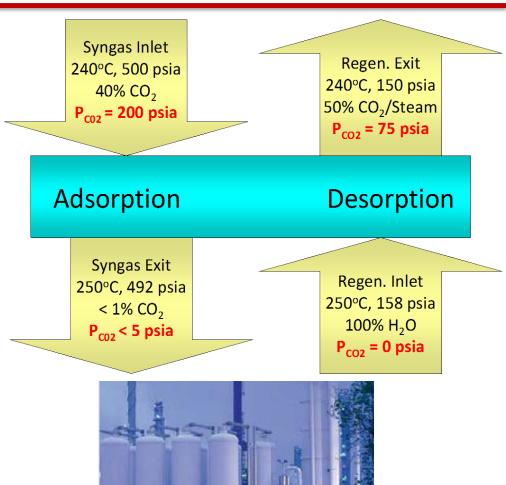
- TDA's uses a mesoporous carbon modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at elevated temperatures
 - Because CO₂ is not bonded via a covalent bond, the energy input for regeneration is low
- Heat of CO₂ adsorption is 4.9 kcal/mol for TDA sorbent
 - Comparable to that of Selexol's
- Net energy loss in sorbent regeneration is similar to Selexol, but a much higher IGCC efficiency can be achieved due to high temperature CO₂ capture



- Pore size can be finely tuned in the 10 to 100 A range
- Mesopores eliminates diffusion limitations and rapid mass transfer, while enables high surface area

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354 US Pat. Appl. 61790193, Alptekin, Jayaraman, Copeland "Precombustion Carbon Dioxide Capture System Using a Regenerable Sorbent"

Integration to the IGCC Power Plant



- Higher mass throughput to gas turbine higher efficiency
- Lower GT temperature Reduced need for HP N₂ dilution hence lower NO_X formation
- Elimination of heat exchangers needed for cooling and re-heating the gas
- Elimination of gray water treatment problem
- Potential for further efficiency improvements via integration with WGS

Operating Conditions

- CO₂ is recovered via combined pressure and concentration swing
 - CO₂ recovery at ~150 psia reduces energy need for CO₂ compression
 - Small steam purge ensures high product purity
- Isothermal operation eliminates heat/cool transitions
 - Rapid cycles reduces cycle time and increases sorbent utilization
- Similar PSA systems are used in commercial H₂ plants and air separation plants

Source: Honeywell/UOP

Primary Focus

- 0.1 MW_e evaluation in a world class IGCC plant to demonstrate full benefits of the technology
 - Testing with high pressure gas

Demonstrate full operation scheme

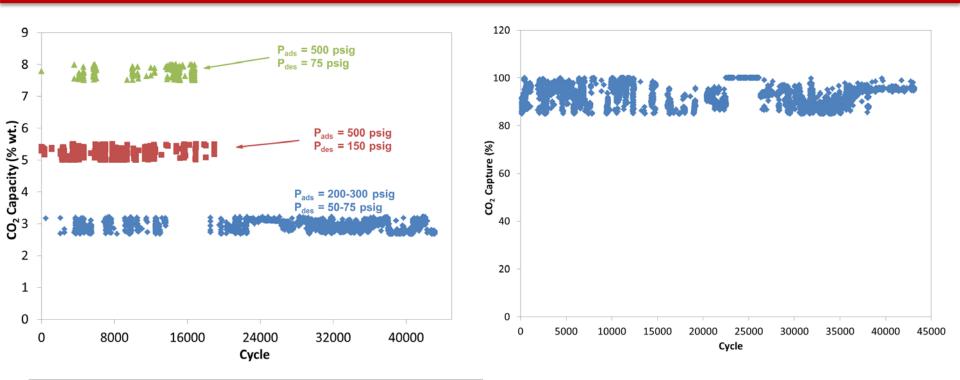
- 8 reactors and all accumulators
- Utilize product/inert gas purges
- \square H₂ recovery/CO₂ purity
- Long-term performance
- Evaluations at various sites using coal-derived synthesis gas
 - Field Test #1 at NCCC Air blown gasification
 - Field Test #2 at Sinopec Yangtzi Chemicals Petro-chemical Plant, Nanjing, Jiangsu Province, China – Oxygen blown gasification

National Carbon Capture Center

Sinopec/Yangtzi Chemicals Petrochemical Complex

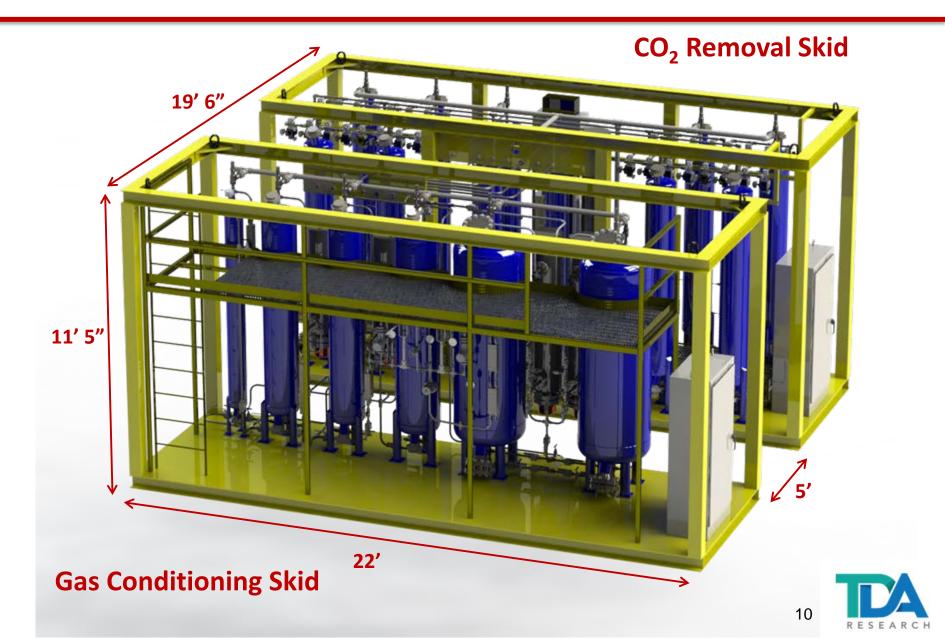
Sorbent and Catalyst for Field Tests

Sulfur Sorbent and WGS Catalyst

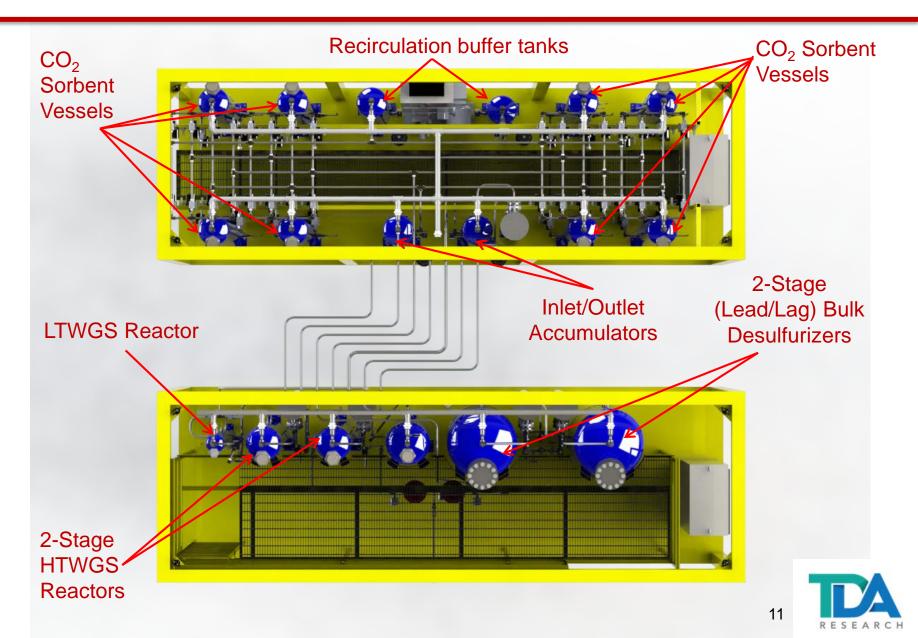

CO₂ Sorbent for Field Tests

- 2 m³ of TDA's CO₂ sorbent has been produced for use in the field tests
- Warm gas Sulfur removal sorbent and High and Low Temperature WGS catalysts have been procured from Clariant

Long-term Sorbent Evaluation


	Synthesis	Simulated	Steam		
	Gas	Gas	Purge		
Temperature	200°C	200°C	200°C		
Pressure	500 psig	200-500 psig	50-300 psig		
	Composition				
H_2	42.8%	53.4%	50.0%		
CO_2	30.0%*	30.0%	-		
H ₂ O	26.6%	26.6%	50.0%+		
CO	0.6%	-	-		
+ adjusted for purge with 100% steam at 150 psia					

- Long-term cycling of the scaleup sorbent shows stable performance over 42,000 cycles
- 60,000 cycles will be completed by December 30, 2018



* adjusted for purge with 100% steam at 150 psia

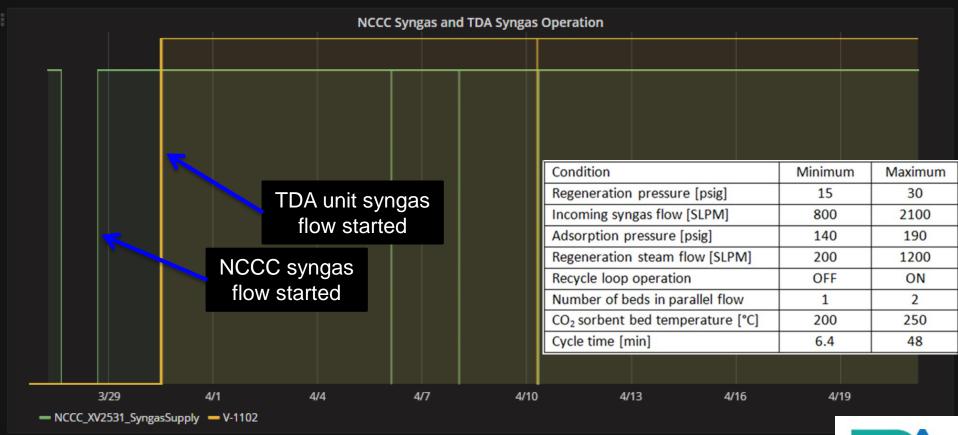
0.1 MW Pilot Unit Design

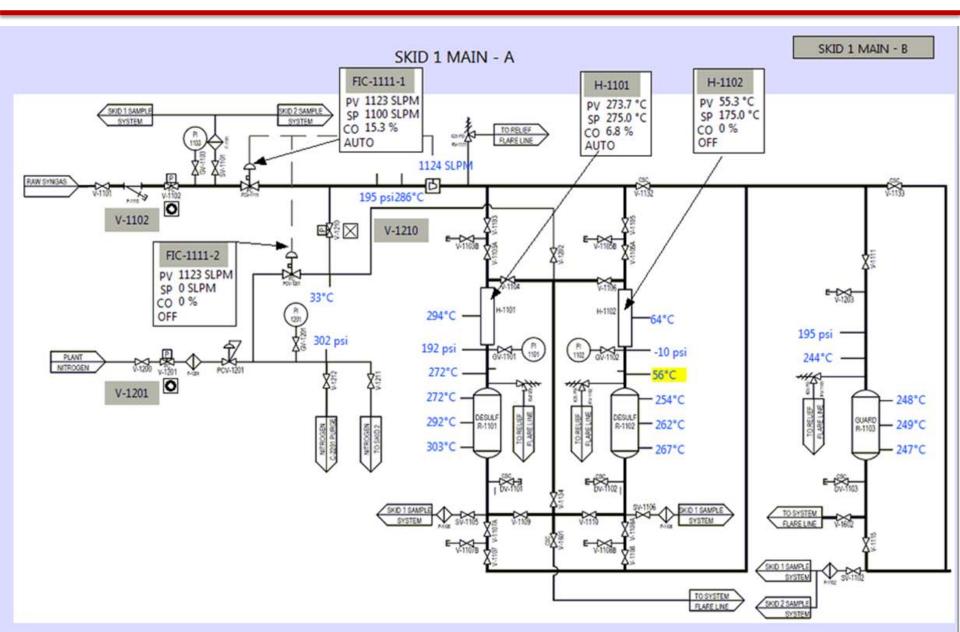
Slipstream Test Skid - Top View

Field Test Units

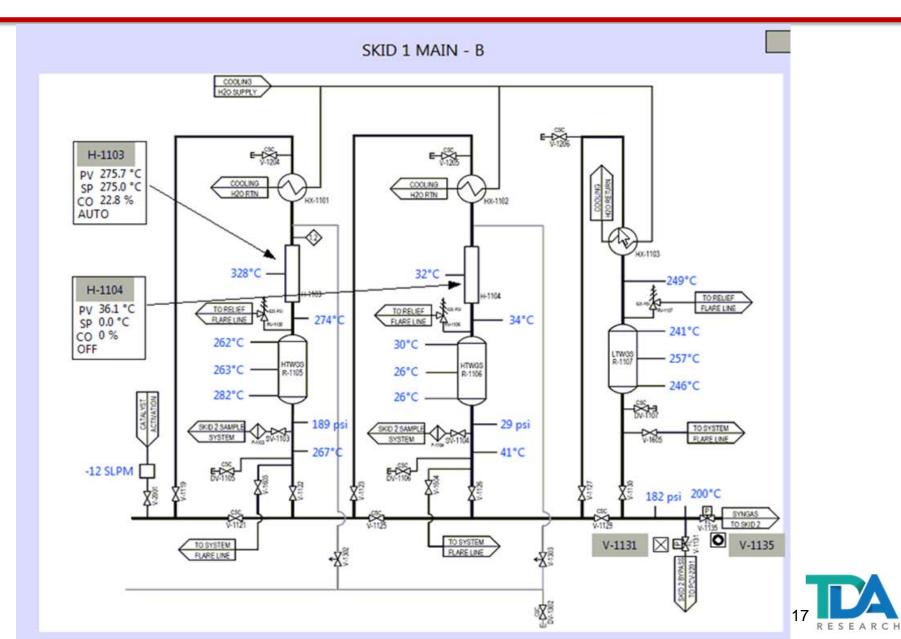
- Completed the fabrication of the Field Evaluation units in September 2016
- All troubleshooting and shakedowns are completed in December 2016

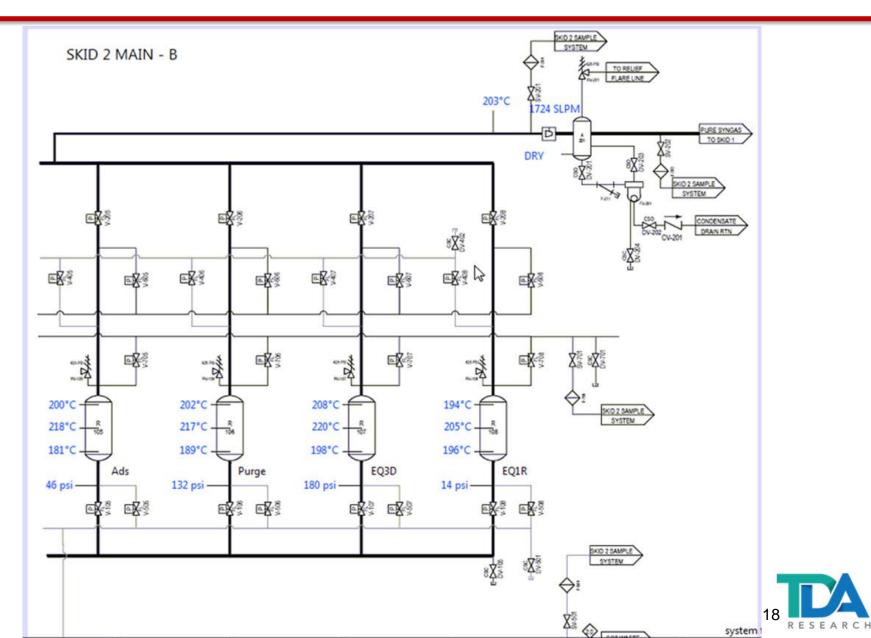
Field Unit Installation at NCCC

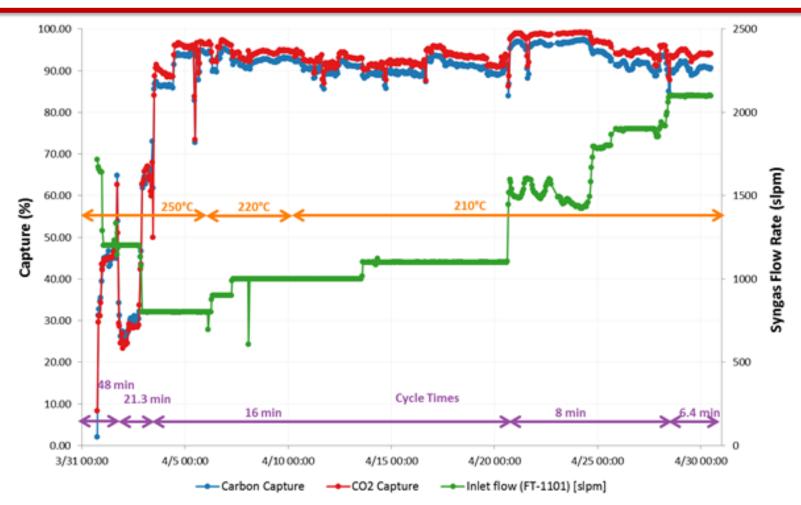

Field Test Unit Installed at NCCC


Operation with Synthesis Gas

- NCCC started synthesis gas flow on 3/28/17 at 18:00
- **D** TDA started the operation of its unit on 3/30/17 at 15:30
- **Both systems are operating well without any interruptions**

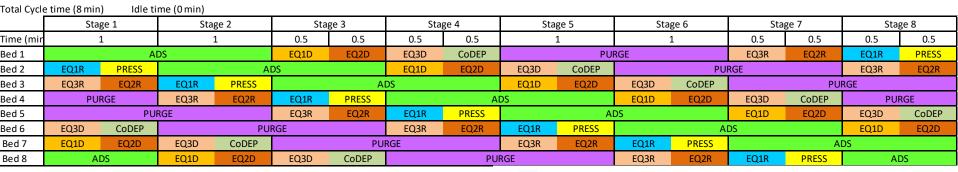



Sulfur Removal Skid Conditions

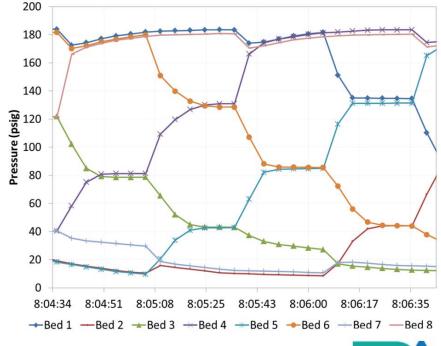

WGS Reactors Operating Conditions

PSA System Operating Conditions

Test Summary



- 707 hrs of continuous operation at 90+% carbon capture
 - 97.3% capture @ 1,500 SLPM; 93% @ 1,800 SLPM; 90% @ 2,100 SLPM
 - Design flow at NCCC operating conditions was 1,360 SLPM (48 SCFM)



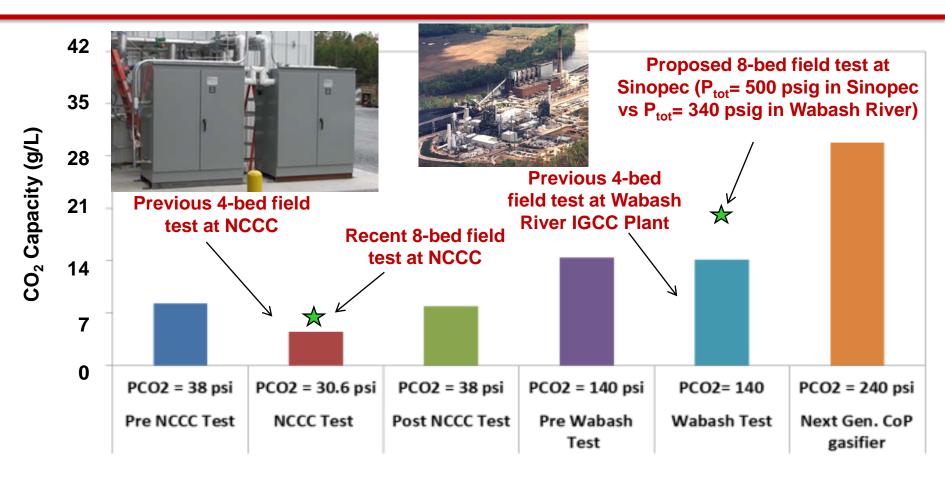
Cycle Scheme with Parallel Flows

• BP2 – PSA Cycle Scheme – 8 min full cycles – 0 min hold time

- Optimized cycle scheme uses parallel flows through two beds during adsorption and purge steps
 - Space velocity is half of the BP1 cycle scheme
 - Eliminated any hold time and minimized time for supporting steps
 - Reduces the pressure drop and allows higher syngas flow
- Tested parallel flow scheme in NCCC field tests and showed 50% higher bed utilization

Working Capacity of the Sorbent

- Sorbent's working capacity increased during the course of the test by:
 - Lowering the cycle time
 - Increasing syngas flow rate (main increase made possible by having parallel beds in adsorption and purge steps)
- Pressure drop through the gas conditioning skid prevented flowing more than 2,100 SLPM of syngas through the PSA skids
 - For Sinopec test, we modified the system to further increase the flow


Summary

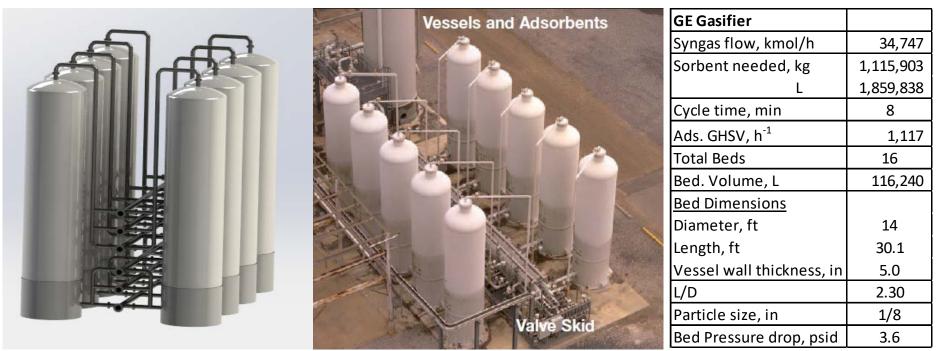
	Design Sinopec NCCC		Actual				
			NCCC				
PSA Cycle Scheme	BP1		BP1	BP2			
Temperature (°C)	216	207	210	210	210	210	210
Pressure (psig)	532	181	190	180	180	160	150
Syngas flow into DeS/WGS Skid 1 (scfm)	73	44	42	42	53	67	74
Syngas flow into CO2 Skid 2 (scfm)	100	48	45	45	57	71	78
Steam added for WGS (scfm)	27.2	4.1	2.7	2.7	4.3	4.3	4.3
CO ₂ Captured (kg/hr)	105.3	25.4	18.0	19.8	25.2	29.5	33.3
Cycle time (min)	16	16	16	16	8	8	6.4
Beds Adsorbing in parallel	1	1	1	2	2	2	2
PCO2 (psi)	175.1	29.0	30.4	28.8	28.8	25.6	24
CO2 capture (%)			94%	89%	99%	93%	94%
Carbon Capture (90%)	90%	90%	91%	86%	96%	90%	91%
Bed Utilization (g CO2/L/hr)	65.8	15.9	11.3	12.4	15.8	18.5	20.8

- We successfully operated the 8-bed PSA unit with real coal derived syngas
- Test unit achieved ~30% higher CO₂ capture than the design performance
 - High dP in the gas conditioning skid limited even higher performance
 - Modifications were competed to achieve higher flows in Sinopec test

Bed Capacity Comparison

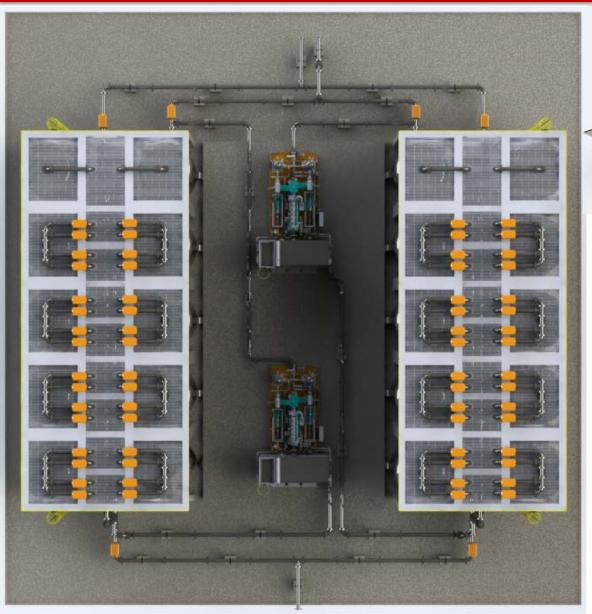
- Sorbent/PSA system maintained slightly higher CO₂ capacity than the earlier field tests at NCCC at ~60X scale
- At Sinopec we expect to achieve higher capacity than in the previous oxyfired gasification tests at Wabash River IGCC power plant

Status of Sinopec Testing


- 2 skids and 2 containers (containing sorbents, catalyst, analyzers, supplies, toolboxes) are shipped to China in December 2017
- Both skids and one of the containers were delivered to the site on April 2018
- One skid held up due to the hazardous nature of the WGS catalyst
- Skid contents will be procured locally; troubleshooting will start in Oct. 2018

Reactor Design

- Different reactor concepts have been evaluated
- Multiple train vertical reactors with internal flow distribution are selected for final design


TDA Design

Source: Honeywell/UOP

World-class PSA systems used in H₂ purification produces up to 400,000 m³/hr H₂ (compared to ~780,000 m³/hr flow rate used in TEA base case)

Full-scale System Design

Major Units

- 8 beds x 2 = 16
- 2 accumulator X 2 = 4
- Cycling Valves
 - $6 \times 8 \times 2 = 96$
- 2 recycle compressors
- 2 isolation vales x 2 per train = 4

E-GasTM & GE Gasifiers

Gasifier	E-Gas		GE	
Case	1	2	3	4
	Cold Gas Cleanup	Warm Gas Cleanup	Cold Gas Cleanup	Warm Gas Cleanup
CO ₂ Capture Technology	Selexol [™]	TDA's CO ₂ Sorbent	Selexol [™]	TDA's CO ₂ Sorbent
CO ₂ Capture, %	90	90	90	90
Gross Power Generated, kW	710,789	670,056	727,633	674,331
Gas Turbine Power	464,000	425,605	464,000	417,554
Steam Turbine Power	246,789	244,450	257,657	246,746
Syngas Expander Power	-	-	5,977	10,031
Auxiliary Load, kW	194,473	124,138	192,546	120,661
Net Power, kW	516,316	545,917	535,087	553,671
Net Plant Efficiency, % HHV	31.0	34.1	32.0	34.5
Coal Feed Rate, kg/h	220,549	212,265	221,917	213,013
Raw Water Usage, GPM/MW	10.9	10.3	10.7	10.5
Total Plant Cost, \$/kW	3,464	3,102	3,359	3,212
COE without CO ₂ TS&M, \$/MWh	136.8	122.3	133.0	125.5
COE with CO ₂ TS&M, \$/MWh	145.7	130.4	141.6	133.4
Cost of CO ₂ Capture, \$/tonne	43	30	37	31

- IGCC plant with TDA's CO₂ capture system achieves higher efficiencies (34.5% and 34.1%) than IGCC with Selexol[™] (32.0% and 31.0%)
- Cost of CO₂ capture is calculated as \$31 and \$30 per tonne for GE and E-Gas[™] gasifiers, respectively (16-30% reduction against Selexol[™])

Shell & TRIG Gasifiers

Gasifier	Shell		TR	liG
Case	5	6	7	8
	Cold Gas Cleanup	Warm Gas Cleanup	Cold Gas Cleanup	Warm Gas Cleanup
CO ₂ Capture Technology	Selexol [™]	TDA's CO ₂ Sorbent	Selexol [™]	TDA's CO ₂ Sorbent
CO ₂ Capture, %	90	90	83	83
Gross Power Generated, kW	672,576	619,214	621,595	617,159
Gas Turbine Power	464,000	416,396	424,616	413,635
Steam Turbine Power	208,576	202,817	196,979	203,524
Syngas Expander Power	-	-	-	-
Auxiliary Load, kW	176,753	111,347	163,837	124,104
Net Power, kW	495,823	507,867	461,808	493,056
Net Plant Efficiency, % HHV	30.8	33.4	31.5	34.5
Coal Feed Rate, kg/h	213,397	201,426	262,700	258,882
Raw Water Usage, GPM/MW	9.9	10.8	8.3	9.6
Total Plant Cost, \$/kW	3,893	3,612	3,728	3,353
COE without CO ₂ TS&M, \$/MWh	149.6	140.2	124.7	113.0
COE with CO ₂ TS&M, \$/MWh	158.4	148.4	143.6	130.3
Cost of CO ₂ Capture, \$/tonne	47	40	39	28

- IGCC plant with TDA's CO₂ capture system achieves higher efficiencies (33.4% and 34.5%) than IGCC with Selexol[™] (30.8% and 31.5%)
- Cost of CO₂ capture is calculated as \$40 and \$28 per tonne for Shell and TRIG gasifiers, respectively (15-28% reduction against Selexol[™])

Acknowledgements

- DOE/NETL funding under the DE-FE-0013105 project
- Project Manager, Andy O'Palko
- Chuck Shistla, GTI
- Ashok Rao, GTI
- Arvind Rajandran, UOA
- **Frank Morton, NCCC**

