### Oxy-Combustion System Process Optimization (Contract No. DE-FE-0029090)



Gökhan Alptekin, PhD Ambal Jayaraman, PhD Mike Bonnema Jerrod Hohman Freya Kugler Mike Ware

2018 CO<sub>2</sub> Capture Technology Meeting

August 14, 2018

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

## **Project Summary**

- The objective is to optimize the Pressurized Oxy-Combustion (POxC) process to minimize the Cost of Electricity (COE)
  - System analysis and design work to optimize POxC process, including thermal management, heat integration, power cycle optimization using process design and modeling supported with Aspen Plus® process simulations
  - Develop a new chemical absorbent-based CO<sub>2</sub> purification system to remove the residual oxygen that contaminates the recovered CO<sub>2</sub>

#### Major Project Tasks

- Sorbent Optimization and Evaluation
  - Performance validation via long-term cycling tests
- Process, System Design and Modeling
- Techno-economic analysis
  - Various configurations with different ASU and O<sub>2</sub> removal options
  - High fidelity engineering analysis and process simulation



### **Project Partners**







#### **Project Duration**

- Start Date = October 1, 2016
- End Date = September 30, 2019

**Budget** 

- Project Cost = \$1,375,042
- DOE Share = \$1,099,998
- TDA and UCI = \$275,044



## **Oxy-Combustion & Carbon Capture**

- In oxy-combustion fuels is burned in O<sub>2</sub> instead of air, which results in a flue gas of primarily CO<sub>2</sub> with trace levels of impurities
- POxC reduces energy and capital costs of the equipment used to purify and compress the CO<sub>2</sub>
- DOE/NETL objective is to optimize the POxC process to limit the COE increase to less than 20% over the nocapture case
- The main cost contributors POxC process includes:
  - Air Separation Unit
  - CO<sub>2</sub> Purification system



|   |                                             | COE      | Increase   |
|---|---------------------------------------------|----------|------------|
|   |                                             | (\$/MWh) | in COE(%)* |
| • | NETL Non-Capture Ref., Air-fired SC w/o CCS | 58.90    |            |
|   | NETL Base Case Current Technology           | 91.07    | 54.6       |
|   | NETL Cumulative Technology Case             | 78.15    | 32.7       |
| ) | Proposed Goal                               | 70.68    | 20.0       |

\*Relative to the non-capture case

Source: Cost of Electricity for Low Pressure Oxy-Combustion Technologies (NETL 2012).



## **Air Separation Options**

- ASU is one of the largest cost contributors to oxy-combustion (consumes over 5% of plant power and constitutes ~20% of plant cost)
- Cryogenic air separation is the choice of technology at large-scale
  - 600 MW plant requires ~170 ton П  $O_2/day$
- Cryo-separation is highly energy Π intensive due to the thermal inefficiencies inherent in the low operating temperatures
- **Alternatives** П
  - Ion Transport Membranes П
    - High TRL
  - Sorbent-Based Air Separation System (TDA Technology developed under DE-FE0026142)
    - \_ I ow TRI



Source: Air Products and Chemicals, Inc.





## **Process Optimization Case Matrix**

| Case                                           | Power Cycle<br>psig/°F/°F | Subsystem Concept Evaluated                       | Oxidant                                     | Sulfur<br>Removal    |
|------------------------------------------------|---------------------------|---------------------------------------------------|---------------------------------------------|----------------------|
| 1 (Base)                                       | Supercritical Steam       | Current ASU                                       | 95% O <sub>2</sub> Cryogenic ASU            | Wet                  |
|                                                | 3500/1110/1150            |                                                   |                                             | FGD                  |
| 2                                              | Supercritical Steam       | Advanced O <sub>2</sub> Membrane w/ Preheat in    | ~100% Advanced O <sub>2</sub> Membrane (Ion | Wet                  |
| 2                                              |                           | Boiler                                            | Transport)                                  | FGD                  |
| 2                                              | Supercritical Steam       | Advanced O <sub>2</sub> Membrane w/ Preheat by    | ~100% Advanced O <sub>2</sub>               | Wet                  |
| 3                                              |                           | Natural Gas Firing                                | Membrane (Ion Transport)                    | FGD                  |
| Λ                                              | Supercritical Steam       | Advanced O <sub>2</sub> Sorbent (TDA) w/          | 95%+ Advanced $O_2$ Sorbent (TDA)           | Wet                  |
| 4                                              |                           | Preheat in Boiler                                 |                                             | FGD                  |
| F                                              | Supercritical Steam       | Advanced O <sub>2</sub> Sorbent (TDA) w Preheat   | 95%+Advanced O <sub>2</sub> Sorbent (TDA)   | Wet                  |
| 5                                              |                           | by Natural Gas Firing                             |                                             | FGD                  |
|                                                | Supercritical Steam       | CO <sub>2</sub> Purification by Catalytic De-     | Two cases chosen from Case 1                | Wet                  |
| 6                                              |                           | oxidation with Natural Gas                        | through Case 5 (e.g., one TDA & one         | FGD                  |
|                                                |                           |                                                   | Ion Transport)                              |                      |
|                                                | Supercritical Steam       | CO <sub>2</sub> Purification by Chemical Looping  | Two cases chosen from Case 1                | Wet                  |
| 7                                              |                           |                                                   | through Case 5 (e.g., one TDA & one         | FGD                  |
|                                                |                           |                                                   | Ion Transport)                              |                      |
| 8                                              | Supercritical Steam       | Advanced CO <sub>2</sub> &                        | Two cases chosen from above (one            | Wet                  |
| 0                                              |                           | ASU Compression                                   | TDA & one Ion Transport)                    | FGD                  |
| g                                              | Ultra-supercritical Steam | Ultra-supercritical Steam                         | Same as Case 8 except steam cycle           | Wet                  |
|                                                | 4000/1350/1400            | Cycle with Advanced Materials                     | (one TDA & one Ion Transport)               | FGD                  |
| 10                                             | Ultra-supercritical Steam | Co-sequestration                                  | Same as Case 9 without CO <sub>2</sub>      | Co-capture           |
|                                                |                           |                                                   | Purification (TDA & Ion Transport)          | with CO <sub>2</sub> |
| 11 Supercritical CO <sub>2</sub> Supercritical |                           | Supercritical CO <sub>2</sub> Cycle with Advanced | Same as Case 8 except working fluid         | Wet                  |
|                                                | Conditions: TBD           | Materials                                         | (one TDA & one Ion Transport)               | FGD                  |

# **CO<sub>2</sub> Purification Need in POxC**



Source: Cost of Electricity for Low Pressure Oxy-Combustion Technologies (NETL 2012).

- The oxygen content in the CO<sub>2</sub> product has to be reduced to less than 1,000 ppmv prior to CO<sub>2</sub> compression
- Heat integration/optimization is critical
  - 10-15% of plant's energy output



# **CO<sub>2</sub> Purity Specifications**

| Component                     | Unit Carbon Steel<br>Pipeline         |                      | n Steel<br>eline       | Enhan<br>Reco        | ced Oil<br>overy       | Saline Reservoir<br>Sequestration |                        | Saline Reservoir CO <sub>2</sub><br>& H <sub>2</sub> S Co-<br>sequestration |                        |
|-------------------------------|---------------------------------------|----------------------|------------------------|----------------------|------------------------|-----------------------------------|------------------------|-----------------------------------------------------------------------------|------------------------|
|                               | (Max<br>unless<br>Otherwise<br>noted) | Conceptual<br>Design | Range in<br>Literature | Conceptual<br>Design | Range in<br>Literature | Conceptual<br>Design              | Range in<br>Literature | Conceptual<br>Design                                                        | Range in<br>Literature |
| CO <sub>2</sub>               | vol% (Min)                            | 95                   | 90-99.8                | 95                   | 90-99.8                | 95                                | 90-99.8                | 95                                                                          | 20 – 99.8              |
| H <sub>2</sub> O              | ppmv                                  | 500                  | 20 - 650               | 500                  | 20 - 650               | 500                               | 20 - 650               | 500                                                                         | 20 - 650               |
| N <sub>2</sub>                | vol%                                  | 4                    | 0.01 - 7               | 1                    | 0.01 - 2               | 4                                 | 0.01 - 7               | 4                                                                           | 0.01 – 7               |
| O <sub>2</sub>                | vol%                                  | 0.001                | 0.001 – 4              | 0.001                | 0.001-1.3              | 0.001                             | 0.001-4                | 0.001                                                                       | 0.001 – 4              |
| Ar                            | vol%                                  | 4                    | 0.01 – 4               | 1                    | 0.01 – 1               | 4                                 | 0.01 – 4               | 4                                                                           | 0.01 – 4               |
| CH₄                           | vol%                                  | 4                    | 0.01 – 4               | 1                    | 0.01 – 2               | 4                                 | 0.01 – 4               | 4                                                                           | 0.01 – 4               |
| H <sub>2</sub>                | vol%                                  | 4                    | 0.01 - 4               | 1                    | 0.01 – 1               | 4                                 | 0.01 – 4               | 4                                                                           | 0.02 – 4               |
| CO                            | ppmv                                  | 35                   | 10 - 5000              | 35                   | 10 - 5000              | 35                                | 10 - 5000              | 35                                                                          | 10 - 5000              |
| H <sub>2</sub> S              | vol%                                  | 0.01                 | 0.002 – 1.3            | 0.01                 | 0.002 – 1.3            | 0.01                              | 0.002 – 1.3            | 75                                                                          | 10 - 77                |
| SO <sub>2</sub>               | ppmv                                  | 100                  | 10 - 50000             | 100                  | 10 - 50000             | 100                               | 10 - 50000             | 50                                                                          | 10 - 100               |
| NOx                           | ppmv                                  | 100                  | 20 - 2500              | 100                  | 20 - 2500              | 100                               | 20 - 2500              | 100                                                                         | 20 - 2500              |
| NH <sub>3</sub>               | ppmv                                  | 50                   | 0 - 50                 | 50                   | 0 - 50                 | 50                                | 0 - 50                 | 50                                                                          | 0 - 50                 |
| COS                           | ppmv                                  | trace                | trace                  | 5                    | 0 - 5                  | trace                             | trace                  | trace                                                                       | trace                  |
| C <sub>2</sub> H <sub>6</sub> | vol%                                  | 1                    | 0 - 1                  | 1                    | 0 - 1                  | 1                                 | 0 - 1                  | 1                                                                           | 0 - 1                  |
| C <sub>3</sub> +              | vol%                                  | <1                   | 0 - 1                  | <1                   | 0 - 1                  | <1                                | 0 - 1                  | <1                                                                          | 0 - 1                  |
| Particulates                  | ppmv                                  | 1                    | 0 - 1                  | 1                    | 0 - 1                  | 1                                 | 0 - 1                  | 1                                                                           | 0 - 1                  |
| HCN                           | ppmv                                  | trace                | trace                  | trace                | trace                  | trace                             | trace                  | trace                                                                       | trace                  |
| Glycol                        | ppbv                                  | 46                   | 0 - 174                | 46                   | 0 - 174                | 46                                | 0 - 174                | 46                                                                          | 0 - 174                |

\* Not enough information is available to determine the maximum allowable amount for HCI, HF, Hg, MEA and Selexol solvent.

Stringent requirements for O<sub>2</sub> (and other contaminants) in compressed CO<sub>2</sub>

• <0.001% vol. O<sub>2</sub>



# **CO<sub>2</sub> Purification via Catalytic Oxidation**



- Catalytic oxidation is mature technology
- Challenges with catalytic oxidation
  - To meet the O<sub>2</sub> concentration requirements, natural gas has to be used in greater quantities than required by the reaction stoichiometry
  - Excess natural gas ending in the CO<sub>2</sub> will reduce system efficiency
  - Limit on CH<sub>4</sub> is high (1% vol.) but tighter on heavier HCs



## **TDA's CO<sub>2</sub> Purification System**



- TDA proposes a chemical absorbent-based oxygen removal system
  - Low O<sub>2</sub> concentration in the treated CO<sub>2</sub> can be readily achieved
  - Excess natural gas can be recycled back to the boiler
- Does not use precious metal catalysts; low cost metal oxide catalyst could polish off impurities



## **TDA's Sorbent**

 TDA sorbent consists of a high surface area (>100 m²/g) mixed metal oxide A<sub>x</sub>B<sub>y</sub>O<sub>z</sub> phase that selectively reacts with the oxygen in the compressed CO<sub>2</sub> at moderate temperatures (<200 to 500°C)</li>

$$2M + O_{2(g)} = 2MO$$
  
 $4MO + CH_{4(g)} = 4M + CO_{2(g)} + 2H_2O_{(g)}$ 

- Sorbent can effectively reduce O<sub>2</sub> content to less than 100 ppmv
  - No equilibrium limitations
- TDA's sorbent uses a unique structure referred to as a "geode"
  - High mechanical integrity
  - High chemical stability
  - High surface area

TDA's geode sorbent structure as seen in SEM



11





Sorbent

Binder or shell material

Shell of geode





### **Typical RedOx Cycle - TGA Tests**



- Fast oxidation/reduction kinetics at 500°C
- 18-20% O<sub>2</sub> uptake capacity (kg O<sub>2</sub> removed per kg sorbent)



## **TGA Cycles at 300°C**



- Formulations were modified using promoters to improve kinetics and oxygen uptake at lower temperatures
- Modified samples showed high capacity (12+% wt. O<sub>2</sub>) at 300°C



### **Impact of Temperature**



• TDA-3 showed better oxygen uptakes at all temperatures



# O<sub>2</sub> Uptake in the Presence of CO<sub>2</sub>



- Some metal oxide carbonation was evident
- Oxidation is much faster than carbonation (from CO<sub>2</sub> reaction)



### **Fixed Bed Reactor Tests**

#### **Test Capabilities**

- Breakthrough tests
- Life cycle tests

#### Variables

- Temp. 200-550°C
- Space velocity = 500-10,000 h<sup>-1</sup>
- Pressure = 1-20 bar
- Absorption: 0.1-5% O<sub>2</sub>/CO<sub>2</sub>
- Regeneration: 0.1-100%  $H_2$  or  $CH_4$
- An electro-chemical O<sub>2</sub> analyzer (ZR800 Zirconia Oxygen Analyzer) with 1 ppmv O<sub>2</sub> detection capability was used to measure the O<sub>2</sub> concentration
- California Analytical NDIR analyzer for CO<sub>2</sub>, CO, CH<sub>4</sub> measurements



### **Breakthrough Tests**



- Breakthrough tests confirmed very high oxygen removal efficiency
- O<sub>2</sub> concentration in treated gas can be lowered to <10 ppmv</li>



## **Multiple Cycle Tests**

#### Cycle # 191 – 198: 400°C



- Stable performance was observed over 300 cycles; both isothermal and TSA cycles in 200-500°C range
  - At 400°C ~7.4%wt. O<sub>2</sub> capacity at 100 ppmv breakthrough
  - 15.77% wt. O<sub>2</sub> capacity at 95% O<sub>2</sub> uptake

|           | 100 ppm BT           | Saturation BT       |
|-----------|----------------------|---------------------|
| Temp (°C) | (0.4% O <sub>2</sub> | (95% O <sub>2</sub> |
|           | uptake)              | uptake)             |
| 400       | 7.42%                | 15.77%              |
| 300       | 5.75%                | 9.18%               |
| 200       | 3.50%                | 4.59%               |
| 100       | 0.09%                | 0.54%               |
| 50        | 0.03%                | 0.06%               |



Temp (C)

### **Using Methane as Reduction Gas**



 When CH<sub>4</sub> is used instead of hydrogen the oxygen uptake decreased due to incomplete regenerations (lower reduction rates with CH<sub>4</sub>)



#### **Reaction Products - 400°C CH<sub>4</sub> Reduction**



- Longer regenerations are needed for full reduction
- CH<sub>4</sub> reduction primarily generated CO<sub>2</sub> (<50 ppm CO was observed)</li>



## **CO<sub>2</sub> Purification Process Design**



## **System Integration**

- Both absorption and regeneration processes are exothermic
- Absorption

$$4M + 2O_2 \rightarrow 4MO$$

 $\Delta H_{rxn}$  = -140-150 kcal/mole

Regeneration  $4MO + CH_4 \rightarrow CO_2 + 2H_2O + 4M$ 

 $\Delta H_{rxn}$  = -40-50 kcal/mole

• Various heat removal options have been investigated



### **Isothermal Design**



Reactors operating in series provides good flow match between the oxidation and reduction steps

### **Isothermal Reactors**

#### **Two reactors operate in series to remove O<sub>2</sub> from the flue gas**

- The first reactor receives flue gas from the compressor and the sorbent adsorbs the oxygen in the flue gas
- The second reactor receives the clean flue gas spiked with methane to regenerate the sorbent
- Isothermal reactors are packed tube, steam is raised using the heat generated by reaction exotherm
- Both reactors are equipped with feed-product heat exchangers to heat the incoming flue gas to the reaction temperature

| Stream ID                                   | 10     | 20     | 30     | 40     | 50    | 60     | 70     | 80     |
|---------------------------------------------|--------|--------|--------|--------|-------|--------|--------|--------|
| Temperature (°C)                            | 78     | 400    | 425    | 99     | 50    | 407    | 425    | 126    |
| Pressure (bar)                              | 23.9   | 23.9   | 22.9   | 22.9   | 22.1  | 22.1   | 22     | 22     |
| Flow (10 <sup>6</sup> Sm <sup>3</sup> /day) | 9      | 9      | 8.8    | 8.8    | 0.2   | 9      | 9.2    | 9.2    |
| N2                                          | 2.60%  | 2.60%  | 2.70%  | 2.70%  | 0.00% | 2.60%  | 2.60%  | 2.60%  |
| 02                                          | 2.70%  | 2.70%  | 0.00%  | 0.00%  | 0.00% | 0.00%  | 0.00%  | 0.00%  |
| Ar                                          | 4.00%  | 4.00%  | 4.10%  | 4.10%  | 0.00% | 4.00%  | 3.90%  | 3.90%  |
| CH4                                         | 0.00%  | 0.00%  | 0.00%  | 0.00%  | 100%  | 2.10%  | 0.10%  | 0.10%  |
| CO2                                         | 90.50% | 90.50% | 93.00% | 93.00% | 0.00% | 91.10% | 90.60% | 90.60% |
| H2O                                         | 0.20%  | 0.20%  | 0.20%  | 0.20%  | 0.00% | 0.20%  | 2.80%  | 2.80%  |



## **Cycle Sequence Optimization**

- In a multi-step cycle sequence, a purge step is added to purge any CH<sub>4</sub> from the bed
- At the end of the reduction step, the void spaces in the bed will be filled with CH<sub>4</sub> (2% vol. max) mixed with CO<sub>2</sub> which could be transferred into the CO<sub>2</sub> stream
- Using a small amount of the oxygenfree CO<sub>2</sub> and purge the bed into the flue gas recycle
- Any residual CH<sub>4</sub> will be combusted in the boiler

|            | Stage 1 | Stage 2 | Stage 3 |
|------------|---------|---------|---------|
| Time (min) | 2       | 2       | 2       |
| Bed 1      | Abs     | Regen   | Purge   |
| Bed 2      | Purge   | Abs     | Regen   |
| Bed 3      | Regen   | Purge   | Abs     |



## CatOx vs. Sorbent-Based O<sub>2</sub> Removal



#### **Feed-Product Exchangers**

Adsorber – 63 MW<sub>th</sub>/Regen – 61 MW<sub>th</sub>

#### **Operating Temperatures**

- Absorber Bed 425°C П
- Regeneration Bed 425°C П
- Outlet Flue Gas 126°C П

#### Heat Recovery – 39 MW<sub>th</sub> from the shell side of the reactors

Steam Generated – 59,640 kg/hr @ 45 bar (medium pressure)

Feed-Product Exchangers

Reactor  $-44 \text{ MW}_{\text{th}}$ Π

#### **Operating Temperatures**

- Catalyst Bed 520°C П
- Outlet Flue Gas 165°C П

#### Heat Recovery – 31 MW<sub>th</sub> from waste heat recovery boiler

Steam Generated – 48,400 kg/hr @ П 45 bar (medium pressure)

## **Plant Performance Summary**

| Case #                       | 1         | 2         | 3         | 4         | 5         |
|------------------------------|-----------|-----------|-----------|-----------|-----------|
| GROSS POWER GENERATED (AT G  | ENERATOR  |           | S) (KWE)  |           |           |
| STEAM TURBINE                | 785,587   | 791,313   | 781,468   | 723,700   | 715,557   |
| DEPLETED AIR EXPANDER        | -         | 214,779   | 212,201   | 80,118    | 80,714    |
| TOTAL GENERATED (KWE)        | 785,587   | 1,006,092 | 993,669   | 803,818   | 796,271   |
| TOTAL AUXILIARIES (KWE)      | 235,587   | 456,091   | 443,669   | 253,818   | 246,271   |
| NET POWER (KWE)              | 550,000   | 550,000   | 550,000   | 550,000   | 550,000   |
| NET PLANT EFFICIENCY (% HHV) | 31.24     | 31.01     | 31.23     | 32.61     | 33.00     |
| THERMAL IN PUT               |           |           |           |           |           |
| COAL KWT HHV                 | 1,760,447 | 1,773,645 | 1,679,498 | 1,686,511 | 1,569,989 |
| NATURAL GAS KWT HHV          | -         | -         | 81,458    | -         | 96,584    |
| TOTAL KWT HHV                | 1,760,447 | 1,773,645 | 1,760,956 | 1,686,511 | 1,666,573 |
| CARBON CAPTURED (%)          | 99.5      | 99.5      | 97.0      | 99.5      | 99.5      |

| Case¤ Power·Cycle¶<br>psig/°F/°F¤ |                                          | Subsystem·Concept·Evaluated¤                   | Oxidant¤                        |
|-----------------------------------|------------------------------------------|------------------------------------------------|---------------------------------|
| 1 ·(Base)¤                        | Supercritical·Steam·-<br>3500/1110/1150¤ | Current ·air · separation · unit · (ASU)¤      | 95%·O₂·Cryogenic·ASU¤           |
| 2¤                                | Supercritical· Steam →                   | Advanced· O₂·Membrane· with·                   | ~100%·Advanced·O <sub>2</sub> · |
|                                   | 3500/1110/1150¤                          | Preheat· in·Boiler¤                            | Membrane·(lon·Transport)¤       |
| З¤                                | Supercritical· Steam·-                   | Advanced· O <sub>2</sub> ·Membrane· with·      | ~100%·Advanced·O <sub>2</sub> - |
|                                   | 3500/1110/1150¤                          | Preheat· by· Nat.· Gas· Combustion¤            | Membrane·(lon·Transport)¤       |
| 4¤                                | Supercritical·Steam·+                    | Advanced· O₂·Sorbent· (TDA)·with·              | 95%+·Advanced·O₂·               |
|                                   | 3500/1110/1150¤                          | Boiler· Heat¤                                  | Sorbent·(TDA)¤                  |
| 5¤                                | Supercritical· Steam·-                   | Advanced· O <sub>2</sub> ·Sorbent· (TDA)·with· | 95%+Advanced O₂·                |
|                                   | 3500/1110/1150¤                          | Nat.·Gas·Combustion· Heat¤                     | Sorbent (TDA)¤                  |



### **Acknowledgements**

- DOE/NETL funding under the DE-FE-0029090 project is greatly appreciated
- DOE Project Manager, Diane R. Madden
- Dr. Ashok Rao, UCI

