Membrane-Sorbent Hybrid System for Post-Combustion CO₂ Capture (Contract No. DE-FE-0031603)

Gökhan Alptekin Ambal Jayaraman David Gribble Michael Bonnema

2018 DOE/NETL Carbon Capture Technology Meeting

August 16, 2018

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Objective

- Project objective is to design and construct a 1 MW scale membranesorbent hybrid post-combustion carbon capture system and evaluate its operation in a long duration field test using flue gas
- Hybrid process consists of a polymeric membrane and a low temperature physical adsorbent to remove CO₂ from the flue gas
 - Membrane is being developed by MTR
 - Adsorbent has been developed by TDA for post-combustion capture
 - Early proof-of-concept demonstrations in an SBIR Phase II/IIB project (DE-SC0011885) proved the feasibility of the hybrid system

Main Project Tasks

BY1	 Design of the 1 MW scale test unit
	- Design review
	- Preliminary Techno-economic analysis
BY2	- Fabrication of the test unit
	- Site Preparation, Installation and Shakedown Tests
BY3	- Field Tests (6-12 months duration)
	- High Fidelity Techno-economic analysis

Project Team

Membrane Technology & Research

UNIVERSITY of CALIFORNIA - IRVINE

Project Duration

- Start Date = August 15, 2018
- End Date = August 14, 2021

Budget

- Project Cost = \$10,000,025
- DOE Share = \$8,000,000
- TDA and its partners = \$2,000,025

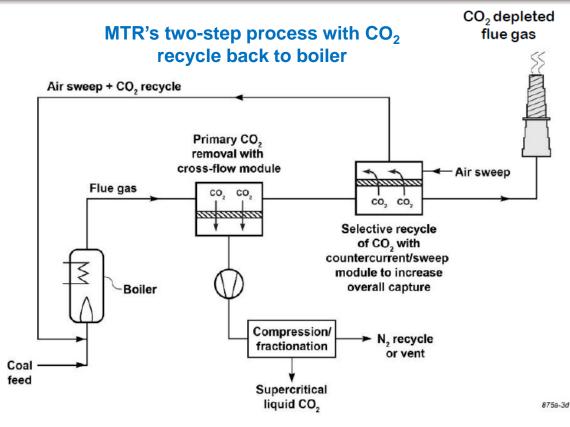
3

LOGY

MONGSTAD

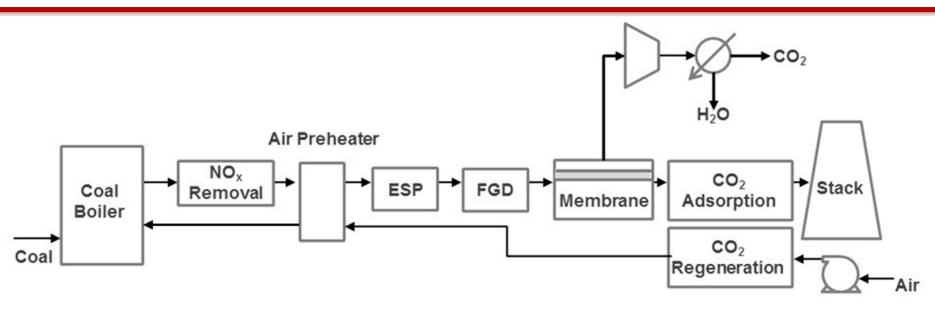
Two-Stage Membrane Approach

• Two membranes in series


- Primary membrane to remove ~50% of the CO₂ in the flue gas
- Secondary membrane uses air sweep to reduce the CO₂ released

Advantages

- Avoids high vacuum needed to achieve high CO₂ removal efficiency
- Allows boiler to generate a high CO₂ flue gas

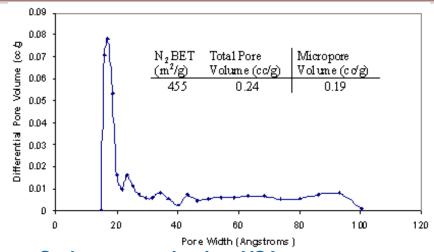

Challenges

- U.S. Patents 7,964,020 and 8,025,715
- The need to pressurize the flue gas to ~2-3 atm for reasonable performance in secondary membrane
- High pressure drop in secondary membrane
- Oxygen transfer from boiler air intake into the flue gas

Hybrid Membrane Sorbent Process

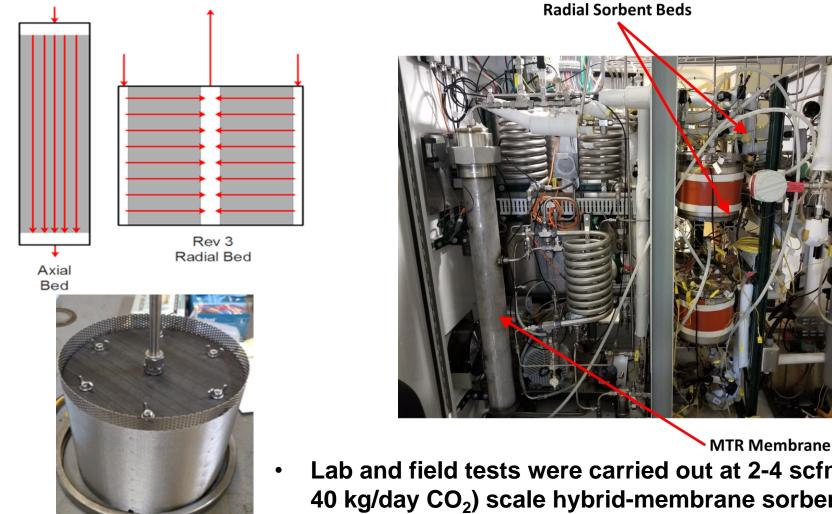
Primary Air Fan

- Membrane operates at ~50°C under mild vacuum, (≈0.3 atm) removes ≈50% of CO₂ and almost all water
 - TDA's sorbent removes remaining CO₂ in the membrane effluent (retentate) ensuring 90% carbon capture
 - The boiler feed air is used as a sweep gas to facilitate sorbent regeneration
 - Low pressure drop
 - TDA's sorbent is less affected by the low P_{CO2} in the second stage
 - Greatly reduced oxygen transfer (from the air side to flue gas side)


TDA Sorbent

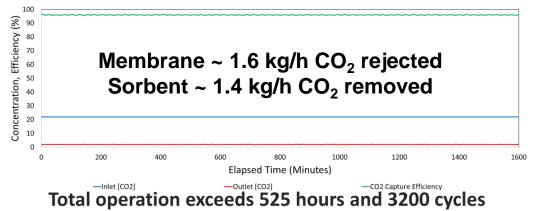
- TDA's uses a mesoporous carbon modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at low partial pressures
 - Because CO₂ is not bonded, the energy input for regeneration is low
- Heat of CO₂ adsorption is 4-5 kcal/mol

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354


Sorbent optimization and production scale-up was completed in a separate DOE project (DE-0013105)

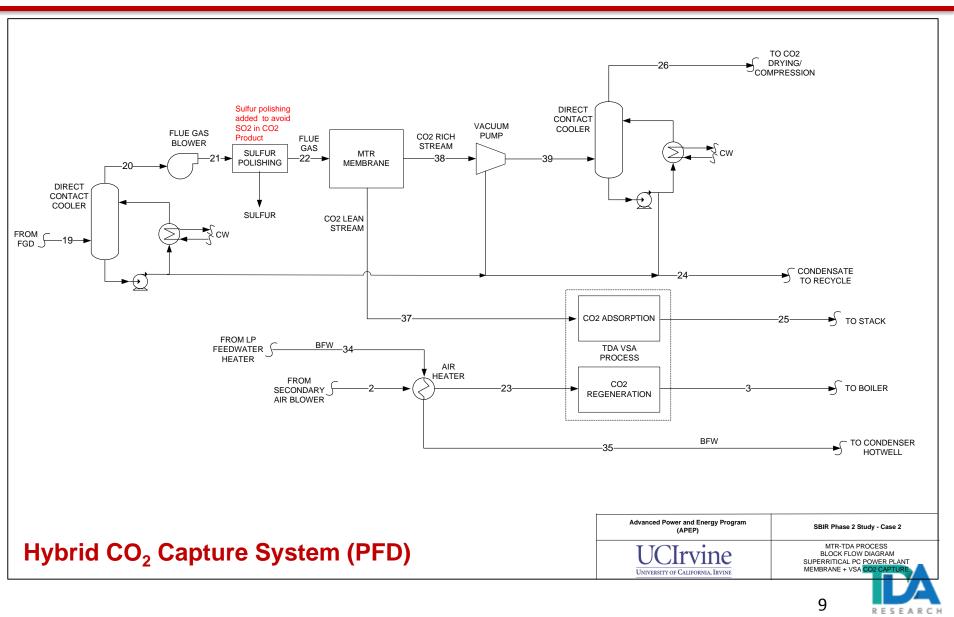
Sorbent operation in a VSA system was successfully demonstrated with actual flue gas (DE-0013105)

Development Under the SBIR Project



TDA's Radial Flow Sorbent Reactors Lab and field tests were carried out at 2-4 scfm (20-40 kg/day CO₂) scale hybrid-membrane sorbent using coal-derived flue gas at Western Research Institute (Laramie, WY)

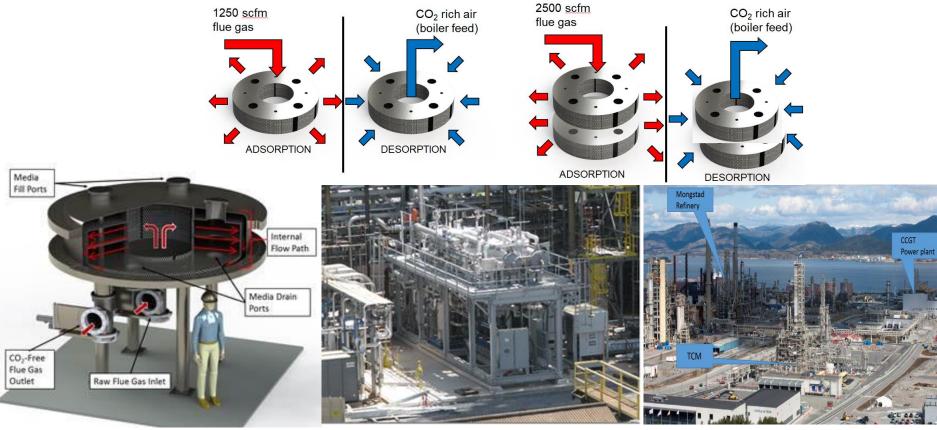
Test Results at WRI



Continuous 4-Bed Cycling Performance (Cycle# 2,000 -2,160)

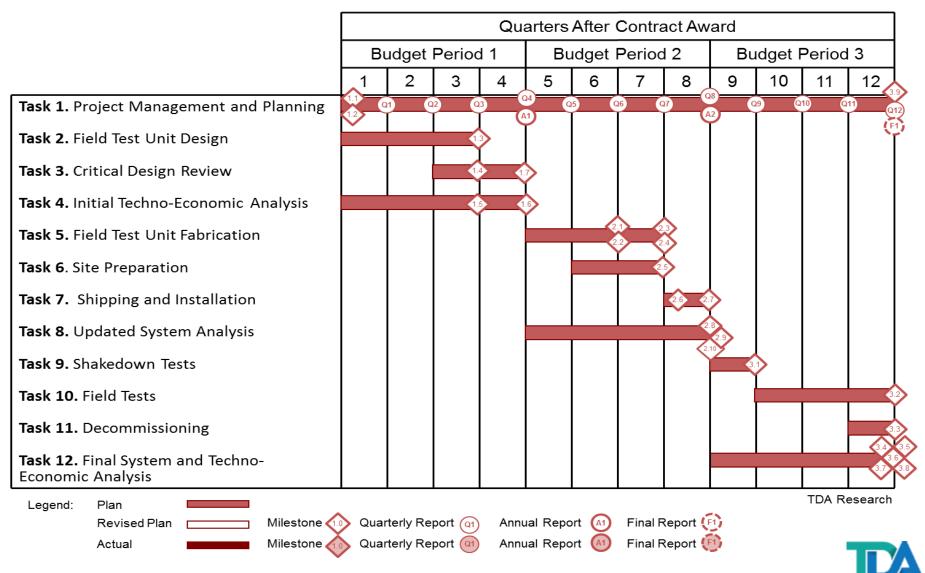
Aspen Process Modeling (UCI)

Preliminary TEA


• TEA for sub- and super-critical power plants suggest substantial improvement in cycle efficiency for the new hybrid technology

· · · · · · · · · · · · · · · · · · ·							
Sub-critical Pulverized Coal fired Power Plant			Super-critical Pulverized Coal fired Power				
No Capture Case DOE Case 9	Reference Amine DOE Case 10	MTR-TDA Membrane Hybrid System	No Capture Case DOE Case 11	Reference Amine DOE Case 12	MTR-TDA Membrane Hybrid System		
0	90	90	0	90	90		
		-					
582,600	672,700	704,312	580,400	662,800	694,044		
32,580	122,740	154,352	30,410	112,830	144,044		
550,020	549,960	549,960	549,990	549,970	550,000		
36.8	26.2	29.7	39.3	28.4	31.9		
198,391	278,956	245,339	185,759	256,652	229,137		
2.4	4.6	3.5	2.2	4.2	3.3		
	No Capture Case DOE Case 9 0 582,600 32,580 550,020 36.8 198,391	No Capture Case Reference Amine DOE Case 9 DOE Case 10 0 90 582,600 672,700 32,580 122,740 550,020 549,960 36.8 26.2 198,391 278,956	No Capture Case Reference Amine MTR-TDA Membrane DOE Case 9 DOE Case 10 Hybrid System 0 90 90 582,600 672,700 704,312 32,580 122,740 154,352 550,020 549,960 549,960 36.8 26.2 29.7 198,391 278,956 245,339	No Capture Case Reference Amine MTR-TDA Membrane No Capture Case DOE Case 9 DOE Case 10 Membrane DOE Case 11 0 90 90 0 582,600 672,700 704,312 580,400 32,580 122,740 154,352 30,410 550,020 549,960 549,960 549,990 36.8 26.2 29.7 39.3 198,391 278,956 245,339 185,759	No Capture Case DOE Case 9 Reference Amine DOE Case 10 MTR-TDA Membrane Hybrid System No Capture Case DOE Case 11 Reference Amine DOE Case 12 0 90 90 0 90 90 582,600 672,700 704,312 580,400 662,800 32,580 122,740 154,352 30,410 112,830 550,020 549,960 549,960 549,990 549,970 36.8 26.2 29.7 39.3 28.4 198,391 278,956 245,339 185,759 256,652		

Project Focus

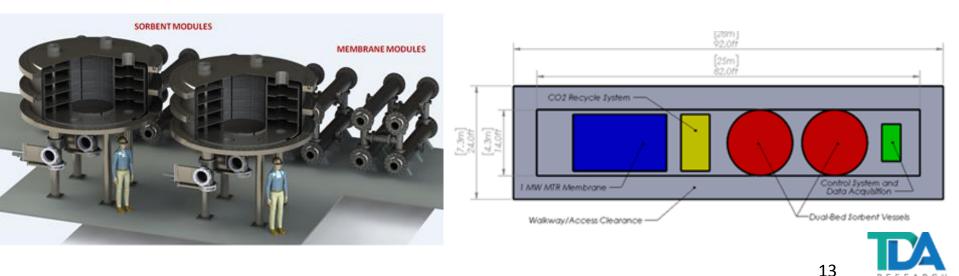

- TDA will develop its modular sorbent bed concept
- MTR will modify an existing unit (20 tpd) previously evaluated at the NCCC
- TCM will host the evaluation of the integrated test unit

TDA's Sorbent System

Existing MTR Membrane Module (20 TPD evaluated at NCCC) TCM Mongstad, Norway

Project Schedule

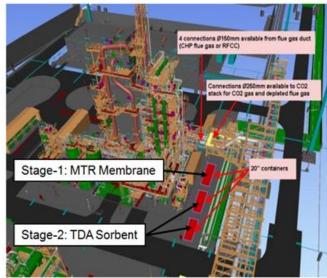
Budget Period 1


Budget Period 1 (BP1: 8/15/2018-8/14/2019)

Design the 1 MW scale modular pilot unit

- GTI to assist in computational fluid dynamic (CFD) simulations
- MTR will design the membrane module
- D TDA will carry out the design of the sorbent module and the BOP

Seek full approval from TCM


Both MTR membrane module and TDA's sorbent system are modular and the data generated in the field tests will be directly applicable to the design of a full-scale system

Budget Period 2

Budget Period 2 (BP2: 8/15/2019-8/14/2020)

- TDA and MTR complete the fabrication/integration of the 1 MW membrane-sorbent hybrid test unit
- **TCM to carry out all the site modifications needed to host field tests**
- Prepare and submit a test plan to DOE
- **UCI will update the Aspen® process simulation model**
- Ship and install the 1 MW pilot unit at TCM facilities in Mongstad, Norway

Budget Period 3

Budget Period 3 (BP3: 8/15/2020- 8/14/2021)

- **Complete the shakedown tests of the Hybrid Field test unit**
- **Carry out a 9 to 12 month long field test campaign at TCM**
- Based on the field test results
 - Update the state point data table for the membrane performance
 - Complete an updated TEA
- Provide DOE with
 - Environmental Health & Safety (EH&S) risk assessment
 - Technology GAP Analysis (TGA)
 - Technology Maturation Plan (TMP)

