A Novel Process for Carbon Dioxide Conversion to Fuel (DE-FE0031714)

Gökhan Alptekin Ambal Jayaraman Sara Rolfe Rita Dubovik Jacob Rodgers

2019 Carbon Capture, Utilization, Storage, and Oil & Gas Technologies Integrated Review Meeting

> Pittsburgh, PA August 26-30, 2019

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Objectives

- The objective is to develop a new sorbent and the process around it for CO₂ utilization
- The sorbent converts CO₂ into CO in a redox process using CH₄ (natural gas) and a small fraction of H₂ generated by reforming/electrolysis
 - CO and H₂ mixture (referred to as synthesis gas) is then used to synthesize a wide range of fuels, alcohols and oxygenates (methanol); methanol to gasoline or chemicals
- Specific objectives
 - Sorbent synthesis and development
 - Bench-scale tests to assess technical feasibility
 - Long-term cycling to demonstrate sorbent life
 - Prototype design
 - Prototype fabrication and proof-of-concept tests
 - Process design and development
 - Gasoline synthesis via methanol-to-gasoline process
 - Diesel fuel synthesis via Fischer-Tropsch

Project Partners

Project Duration

- Start Date = January 10, 2019
- End Date = January 9, 2021

<u>Budget</u>

- Project Cost = \$1,000,000
- DOE Share = \$800,000
- TDA and its partners = \$200,000

Process Schematic – NG Reduction

Dry reforming can be achieved with very high level of conversion

Initial Results

- Modified sorbent has 9.5% wt. oxygen uptake at 600°C in TGA tests
- CH₄ conversion (at 5,000 h⁻¹ GHSV) is strongly dependent on temperature
 - Nearly 100% CH₄ conversion at 700°C
 - Performance at 700°C (green) is higher than 600°C (orange)

CH₄/C₂H₆/C₃H₈ and CO₂ Cycling

Reduction: 2% CH₄ or 2%C₂H₆ or 2%C₃H₈ Balance N₂; 40 minutes Oxidation: 100% CO₂; 20 minutes

Product Distribution with $2\%C_3H_8/N_2$ reduction, T= 600°C

- C₂H₆ and C₃H₈ have much higher activity than CH₄ that will enable lower light-off temperatures
- Formation of CO and olefins were evident during the sorbent reduction step

Preliminary Simulation Results

	CASE		
	Case 1	Case 2	Case 2
	H2-MeOH	H2-FT	NG-FT
CO2 Entering Plant, tonne/h	56	56	32
Steam Turbine Power, kWe	10,395	11,793	10,625
Net Electricity Imported, kWe	427,905	375,798	133 <i>,</i> 505
Product(s), tonne/h	37.54	13.97	13.97
Cost of Product(s), \$/tonne	567	1,362	784
Cost of Product(s), \$/gal	1.71	3.81	2.19

- Under a separate DOE project (DE-FE0029866), TDA and UCI developed an Aspen Model for the CO₂ conversion to fuels
- The use of H₂ and natural gas was evaluated as reductants
 - FT Liquids are produced at \$3.81/gal or \$2.19/gal based on the reductant source (H₂ or CH₄, respectively)
- An Life Cycle Analysis (LCA) will be carried out to fully assess the carbon capture and utilization

