Transformational Sorbent System for Post Combustion Carbon Capture (Contract No. DE-FE-0031734)

Gökhan Alptekin Ambal Jayaraman

2019 Carbon Capture, Utilization, Storage, and Oil & Gas Technologies Integrated Review Meeting

> Pittsburgh, PA August 26-30, 2019

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Objective

- Objective is to develop a transformational sorbent system that can:
 - Capture more than 90% of CO₂ emissions
 - Recover CO₂ at 95% purity
 - Reduce COE by 30% more than can be achieved by amine based systems and achieve capture cost less that \$30 per tonne of CO₂
- A highly stable high capacity metal-organic framework (MOF) based physical adsorbent is being developed to remove CO₂ from the flue gas using a novel adsorption cycle scheme
- Main Project Tasks

BP3

- BP1 Demonstrate sorbent performance in lab scale
 - Assess impact of flue gas contaminants (SO₂, NOx, HCI)
 - Develop adsorption cycle sequence
 - Preliminary Techno-economic analysis (TEA)
- BP2 Scale-up sorbent production
 - Complete Life Tests
 - Optimize adsorption cycles and update TEA
 - Complete field tests (6 months duration)
 - High Fidelity TEA and EH&S assessment

Project Team

UNIVERSITY of CALIFORNIA - IRVINE

Overall Project Duration

- Start Date = June 1, 2019
- End Date = May 31, 2022

Budget

- Project Cost = \$3,750,000
- DOE Share = \$3,000,000
- TDA and its partners = \$750,000

Budget Period 1 Duration

- Start Date = June 1, 2019
- End Date = May 31, 2020

Budget

- Project Cost = \$1,212,387
- DOE Share = \$969,887
- TDA and its partners = \$242,500

TDA's CO₂ Capture Process

- Sorbent operates at ~50-60°C during adsorption
- Various options will be explored for the regeneration
 - Vacuum swing adsorption (VSA) mild vacuum (0.2-0.3 atm) under isothermal conditions
 - Temperature swing adsorption (TSA) mild TSA (40-70°C max) to recover CO₂ at high pressure
 - Concentration swing adsorption (CSA) use low grade steam
 - Any combinations above

Previous Sorbent Development

CO₂ Removal from Portable Life Support System using space vacuum

- High vacuum (1-2 torr)
- Low water (a sublimator is in place)
- VSA -Adsorb at 2500 torr regenerate at 1 torr

Harvesting CO₂ from Mars to produce propellants for return trip using TSA

- TSA -Adsorb at 5 torr regenerate at 3800 torr (5 atm)
- Very low water

Removing CO₂ from Virginia Class Submarines using VSA/TSA

- □ 130 person crew
- Adsorb at 5000 torr
 30°C and regenerate at
 760 torr at 100°C(1 atm)

- High water
- We also completed a DOE SBIR Phase I project, showing the potential of the new sorbent in post-combustion capture (removing CO₂ from low concentration generators, such as NGCC plants)
 - VSA, high moisture

TDA's MOF Sorbent

- Very high CO₂ uptake (2-3 mmol/g) at 0.15-0.20 bar CO₂ partial pressure
- High CO₂ selectivity over N₂
- Relatively low energy input requirement for sorbent regeneration

	Selectivity
P _{CO2} (bar)	CO_2/N_2
0.05	9.32
0.1	16.29
0.15	22.92
1	57.52

Powder Vs Pellets

Fixed Bed Reactor Tests

CO₂ capacity of the pelletized sorbent was measured in a fixed bed test unit

Adsorption: 12.6% CO₂, 86 ppm NO, 73 ppm SOx in N₂; 10,000 h⁻¹ Desorption: N₂ T = 25°C

- **The sorbent achieved a CO₂ capacity of 4.0% wt. CO₂**
- **CO₂** capacity is not degraded upon exposure to NO and SOx

Life Tests in TGA

TDA's sorbent showed stable performance over 10,000 cycles

