Application of Computational Thermodynamics in Solid Oxide Fuel Cell

Shadi Darvish, Mohammad Asadikiya, Yu Zhong Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609

Introduction

Degradation of the cell components affect the performance

Quantitative Brouwer Diagram and Electronic Conductivity of LSM-20

n-YSZ Phase Diagram

 $\Delta G_{\text{total}} = \Delta G_{\text{bulk}} + \gamma A = \Delta H_{\text{bulk}} - T \Delta S_{\text{bulk}} + \gamma A$

of the device due to the:

- 1. chemical instability of the cathode surface (Region I)
- 2. the cathode/electrolyte (solid-solid) interfaces at the **TPBs (Region II)**

Degradation observed in high CO₂, H₂O, SO₂, Cr⁶⁺ partial pressure condition due to the formation of secondary **phases** such as $SrO/SrCO_3$, MnO_x oxides, $Mn(Mn, Cr)_2O_4$, $La_2Zr_2O_7$ (LZO) and SrZrO₃ (SZO). Despite the importance of this fact, **degradation mechanism** is still not clear.

Reassessment of YSZ Thermodynamic Database

Discrepancy observed in n-YSZ phase diagram was the starting point of reevaluation of YSZ thermodynamic database.

Phase	Interaction parameter	This work	Chen et al. [18]
Cubic ZrO₂ (and β-Y₂O₃)	${}^{0}L_{Y^{3}+,Zr^{4+};O^{2-}} = {}^{0}L_{Y^{3}+,Zr^{4+};Va}$	-71804 + 35 T	-76000 + 31.7 T
	${}^{1}L_{Y^{3}+,Zr^{4+};O^{2-}} = {}^{1}L_{Y^{3}+,Zr^{4+};Va}$	17443 - 6.4 T	+34200 - 8.6 T
	${}^{0}L_{Zr,Zr^{4+};O^{2-}} = {}^{0}L_{Zr,Zr^{4+};Va}$	-66519 - 1.6 T	-66500 - 1.6 T
	${}^{1}L_{Z\mathbf{r},Z\mathbf{r}^{4+};O^{2-}} = {}^{1}L_{Z\mathbf{r},Z\mathbf{r}^{4+};Va}$	-20014 - 42 T	-20000 - 42 T
Tetragonal ZrO ₂	${}^{0}L_{Y^{3}+,Zr^{4+};O^{2-}} = {}^{0}L_{Y^{3}+,Zr^{4+};Va}$	-42191 + 25.1 T	-48800 + 18.4 T
Monoclinic ZrO ₂	${}^{0}L_{V^{3+},Zr^{4+};O^{2-}} = {}^{0}L_{V^{3+},Zr^{4+};Va}$	11000	0
α- Υ 2O3	${}^{0}L_{Y^{3+},Zr^{4+};O^{2-};O^{2-}} = {}^{0}L_{Y^{3+},Zr^{4+};O^{2-};Va} = \\ {}^{0}L_{Y^{2+},Zr^{4+};Va;O^{2-}} = {}^{0}L_{Y^{3+},Zr^{4+};Va;Va}$	-74000 + 13.5 T	-88700 + 13 T
Liquid	${}^{0}L_{Y^{3+},Zr^{4+}:O^{2-}}$	+32000	+20100
	${}^{1}L_{Y^{2^{+}},Zr^{4^{+}}:O^{2^{-}}}$	-20000	-13000
	² L _{Y²⁺,Zr⁴⁺:O²⁻}	-24000	-40000

Summary

- Computational Thermodynamics can be widely used in Solid Oxide Fuel cell:
- Perovskite and YSZ thermodynamic database development
- Electronic and Ionic Conductivity prediction
- The phase stability prediction of cathode side with the existence of gas impurities
- *Phase stability prediction for nano-size particles*
- The in-house multicomponent La-Ca-Sr-Mn-Co-Cr-Fe-O-Y-Zr-C-H-S Thermodynamic database can be used for various applications.

Acknowledgement

This work was supported by: The American Chemical Society Petroleum Research Fund(PRF#54190-DNI10)