

Deposition of Nickel Nanoparticles in SOFC Anodes to Improve Performance

Yanchen Lu, Paul Gasper, Boshan Mo, Uday Pal, Srikanth Gopalan and <u>Soumendra Basu</u>

Division of Materials Science and Engineering Boston University

Presented at the 2018 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, June 13 – 15, 2018, Washington, D.C..

Motivations for Anode Infiltration

- Incorporation of alternate materials for
 - Sulfur tolerance
 - Coking tolerance
- Ni reduction
- Increase in TPB density
 - decrease in activation polarization
 - Increase in anodic exchange current density

Research Approach

- Ni infiltration of commercial Ni/YSZ cermet anodes
 - Ni/YSZ anodes are already percolating
- Explore liquid phase and vapor phase infiltration
- Only infiltrated Ni particles on YSZ will add to TPB length
 - Quantify added TPB length by SEM study of fracture cross sections
- Additional TPBs will be active only if they have an electrically conducting pathway
 - When are the infiltrated particles part of an electrically conducting pathway?

Characterization of Button Cell Microstucture

SEM

Liquid Infiltration of Ni-YSZ Anodes

Results of Liquid Infiltration

For the reduced sample, after 5 cycles, the infiltrated Ni content is:

- 2.33 volume % of anode, or:
- 8.1 volume % of the pores

Ni Nanoparticles in Liquid Infiltrated Anodes

Uninfiltrated

Infiltrated

Liquid infiltration of conventional Ni/YSZ cermet can can lead to deposition in the anode active layer

Challenges of Liquid Infiltration

- Time consuming procedure
- Thermal cycling introduces possibility of electrolyte failure
- Maintaining cell integrity in reduced state during processing steps and electrochemical testing is challenging

Alternate approach:

Vapor phase infiltration of metallic Ni into anode using water vapor and forming gas

Thermodynamics of Ni Vaporization: Effect of T

Vapor Phase Infiltration of Ni in Ni-YSZ Anodes

'Nano-particle deposition in porous and on planar substrates', U.S. Patent Application No. 62/364757 filed

Location of Ni Nanoparticles

- Ni nanoparticles on YSZ grains have rounded shapes
- The shape of the nanoparticles are approximately hemispherical

Ni nanoparticles on YSZ grains will create TPBs

Calculation of Added TPB Density

Additional TPB Density

TPB in AAL (μm/μm³)		
Original Ni/YSZ cermet	2.39	
Ni nanoparticles	5.99	
Total in infiltrated sample	8.38	

Question?

Are these TPBs active, i.e., are they a part of an electrically conductive pathway?

Creating Percolating Ni Nanoparticles

Ni-YSZ Contact Angle: Thermodynamic Model

Z. Jiao and N. Shikazono, Acta Mater., vol. 135, p. 124-131, 2017

Cell Nomenclature for I-V Tests

STUDY 1	Cell Nomenclature			
Test Temperature	Uninfiltrated Cell 1	Infiltrated Cell 1	Infiltrated Cell 2	
800° C	X	Х		
700° C	X		Х	
600° C	X		Х	

STUDY 2	Cell Nomenclature			
Test Temperature	Uninfiltrated Cell 2	Infiltrated Cell 3	Infiltrated Cell 4	
750° C	X	Х		1
700° C	X		Х	
650° C	X		Х	

- Cells were tested in pure O₂ on cathode side under various anode atmospheres and temperatures
- Cathode atmosphere was switched to dry air without cooling and tested under various anode atmospheres and temperatures (results are discussed)
- **STUDY 1:** Cells were tested to high current densities and low potentials (well into concentration polarization conditions).
- **STUDY 2**: Cells were tested to low current densities and high potentials (concentration polarization conditions never reached).

Summary of Study 1 Results

Testing Temperature	Cell	Maximum Power Density (W cm ⁻²) at Different Anode Gas Mixtures		
		3% H ₂ O – 97% H ₂	50% H ₂ O – 50% H ₂	75% H ₂ O – 25% H ₂
800°C	Uninfiltrated	1.078	0.701	0.408
	Infiltrated Cell 1	1.281	0.831	0.414
	Change	+18.8%	+18.5%	+1.5%
700°C	Uninfiltrated	0.408	0.335	0.255
	Infiltrated Cell 2	0.606	0.455	0.289
	Change	+48.5%	+35.8%	+13.3%
600°C	Uninfiltrated	0.078	0.068	n/a
	Infiltrated Cell 2	0.123	0.099	n/a
	Change	+57.7%	+45.6%	n/a

Particle Statistics in Study 1

Comparison of Study 1 and Study 2 Samples

Nanoparticle Percolation versus Coarsening

Infiltrated Cell 1 - 700°C (High Current) Infiltrated cell 3 – 750°CC (Low Current)

Nanoparticle connectivity can lead to coarsening

Ni Nanoparticle Instability at 800°C

Ni nanoparticles disappeared from the AAL at extremely high current densities

Conclusions

Increasing current density

- An initial exposure to anodic concentration polarization conditions, followed by normal cell operation should preserve the percolated Ni nanoparticles and maintain improved cell performance.
- Exposure to very high current densities should be avoided.

Acknowledgements

Project funding: DOE/NETL Award #: DE-FE0026096

A. Nikiforov, and A. Krupp Boston University, Boston, MA 02215

S. Markovich, H. Abernathy, S. Vora *NETL, Pittsburgh, PA 15236*

