Laser 3D Printing of SOFCs

Project ID: FE069-p

Jian Liu, Ph.D.
Principal Investigator
Taylor Cheng and Shuang Bai
PolarOnyx, Inc.
2526 Qume Drive, Suites 17
San Jose, CA 95131
Tel: 408 573 0930
Email:jianliu@polaronyx.com

DOE 2018 Annual Review Meeting: June 13, 2018
Laser 3D Printing of SOFCs

DoE SBIR Phase II DE-SC0015199 (04/10/2017 - 04/09/2019)

14b. Additive Manufacturing for Solid Oxide Fuel Cell (SOFC) Components

Timeline and Budget

Direct 3D Femtosecond Laser Manufacturing of SOFC

• Project Start Date: 04/10/2017
• Project End Date: 04/09/2019
• Total Project Budget: $999K
 • Total DOE Funds Spent*: $426K as of 3/31/2018

Barriers

• Limited R&D on 3D printing of SOFC
• Challenge in multi-material AM
• Challenge in thickness control and interface quality

Partners

• Funded by DOE NETL
• Engaging with public companies for collaboration and potential investment, M&A.

Innovating 3D Manufacturing
SOFC AM Phase II Objectives

Ni-YSZ

YSZ (8 mol% \(\text{Y}_2\text{O}_3 \))

LSM: La0.8Sr0.2MnO3, (La0.8Sr0.2)0.98 MnO3, La0.85Sr0.15MnO3, (La0.85Sr0.15)0.98 MnO3, (LaxSr1-x)yMnO3

Key Objectives in Phase II:
- Multi-layer and multi-material additive manufacturing
- Subtractive manufacturing
- SOFC fabrication and test

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
<th>Thickness</th>
<th>Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode</td>
<td>Ni/YSZ</td>
<td>0.3-0.6 mm</td>
<td>~ 40%</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>YSZ</td>
<td>5-10 µm</td>
<td>< 5%</td>
</tr>
<tr>
<td>Cathode</td>
<td>Conducting ceramic</td>
<td>10-50 µm</td>
<td>~ 30%</td>
</tr>
</tbody>
</table>
fs Fiber Laser Based AM Setup

Electrical control schematic

Innovating 3D Manufacturing
Phase II Major Milestones

<table>
<thead>
<tr>
<th>Item</th>
<th>Delivery Month</th>
<th>Major milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Experiment setup of AM for Ni-YSZ anode</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Experiment results & optimization of Ni-YSZ anode</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>Optimization of AM for YSZ-electrolyte</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>Optimization of Multi-layer anode and electrolyte</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>Make small fuel cell. Continuation application</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>Experiment results of SOFC fabrication, packaging, and thermal management. SM process optimization. Make small cells and do optimization</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>SOFC testing results and design scaling and optimization</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>Optimization of SOFC AM system and stabilizing the process</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>Prototype and marketing report</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>Publications</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>Final patent report on Phase II project</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>Wrap up all the deliverables</td>
</tr>
</tbody>
</table>
Multi-layer YSZ AM Process

<table>
<thead>
<tr>
<th>Scanning Speed (mm/s)</th>
<th>Laser Power (W)</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 W</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td></td>
<td>90 W</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td></td>
<td>110 W</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

Two layers YSZ AM

18 um thick YSZ on YSZ

After optimization

Innovating 3D Manufacturing
Multi-layer Ni-YSZ AM and Optimization

<table>
<thead>
<tr>
<th>Layer</th>
<th>Power</th>
<th>Type</th>
<th>Tile Size</th>
<th>Spacing</th>
<th>Speed</th>
<th>Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>200W</td>
<td>Line</td>
<td>1</td>
<td>0.03</td>
<td>2000mm/s</td>
<td>0.5</td>
</tr>
<tr>
<td>2nd</td>
<td>200W</td>
<td>Line</td>
<td>2</td>
<td>0.03</td>
<td>4000mm/s</td>
<td>0.5</td>
</tr>
<tr>
<td>3rd</td>
<td>200W</td>
<td>Stripe</td>
<td>3</td>
<td>0.03</td>
<td>2000mm/s</td>
<td>0.5</td>
</tr>
<tr>
<td>4th</td>
<td>200W</td>
<td>Line</td>
<td>4</td>
<td>0.03</td>
<td>4000mm/s</td>
<td>0.5</td>
</tr>
<tr>
<td>5th</td>
<td>200W</td>
<td>Line</td>
<td>5</td>
<td>0.03</td>
<td>4000mm/s</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Innovating 3D Manufacturing

6/13/2018
Optimized Ni-YSZ AM Process

1st Layer
- Power: 230w
- Type: Line
- Speed: 400mm/s

2nd Layer
- Power: 230w
- Type: Chess
- Tile Size: 2
- Spacing: 0.03
- Speed: 70mm/s
- Overlap: 0.5
- AOM: 4

Uniform and smooth surface is made with good repeatability.

Ni-YSZ AM is very sensitive to process parameters (power, speed, hatch, scan pattern, powder, substrate, etc.). Only small process window works.
Crystal structure of ZrO₂ is different between commercial sample and PolarOnyx sample. Tetragonal for commercial, and cubic for PolarOnyx. This is because of processing temperature is different. The tetragonal is formed at 2370 °C, and cubic is formed at 2690 °C.

Will cubic phase be good for SOFC?
Ni-YSZ Anode Substrate

Substrate made

Selected for next step
YSZ on Ni-YSZ

Scan pattern 1

Scan pattern 2

Innovating 3D Manufacturing
10x10 mm SOFC Samples

Succeeded in making a few complete cells with controlled thickness.

- Ni-YSZ Layer Thickness (After Remove Bottom Powder): ~280 µm
- YSZ Layer Thickness: 10µm – 25µm
- LSM Layer Thickness: 10µm -40µm

10 µm thick YSZ (electrolyte) can be processed on Ni-YSZ (Anode)
- Chess pattern works the best to mitigate residual stress induced by thermal gradience
- 12x12 mm area is achieved
Subtractive Manufacturing (SM) is used to drill holes to enhance performance.

Innovating 3D Manufacturing
SOFC Test Results

It is working and improvement is needed.
Next Steps

• Optimize process to get uniform thickness and interface control
• Optimize subtractive manufacturing (SM) to control porosity.
• Strengthen the Ni-YSZ anode substrate
• Scale the dimension

Priority: Performance improvement
Summary-Phase II Accomplishments

- Designed, developed, and assembled an AM system with fs fiber laser
- Developed YSZ AM with high repeatability and multi-layer process
- Developed Ni-YSZ as anode layer with 12x12 mm area and high repeatability and uniformity
- Developed triple-layer AM of YSZ (electrolyte), Ni-YSZ (Anode) and LSM (Cathode) with 10x10 mm area. World’s first demonstration of a working SOFC using fs Laser AM.
- Modeled the AM process on thermal stress
- One publication
Thank You Very Much!

The future is in our hand!