

Cathode Evaluation for SOFC Reliable Performance

BRIAN J. INGRAM Le (Gavin) Ge * J. David Carter Donald C. Cronauer Victor A. Maroni

Jerry Xu (IIT) Adam Hock (ANL/IIT)

U.S. DOE H₂ and Fuel Cells Program 2018 Annual Merit Review and Peer Evaluation Meeting June 13-15, 2018

* Now at Fuel Cell Energy

Scope and research objectives

Enable SOFC performance reliability & low cost materials diagnostics for high cell fabrication yields

- Develop a diagnostic half-cell and full-cell testing protocol and establish a baseline performance for statistical comparison
- Identify key factors and tolerances in feedstock powders mapping to cell electrochemical reliability
- Develop rapid and simple diagnostic approach to predict the performance characteristics of feed stock powders as they are received

FUNDAMENTAL STUDIES -

RAPID DIAGNOSTIC ANALYSES

Effort will focus on short term electrochemical performance reliability

Conclusion and outline

- Feedstock powder variations in morphology and phase composition exhibits broad variation
- Rapid and simple diagnostic approaches have been thoroughly investigated including Raman and FTIR to probe chemical and phase composition
 - SrCO₃ and M₃O₄ second phase is evident, quantified, and mapped.
 - Performance trends with chemical variation is ongoing
- Effort to decouple morphology effects from macro-surface chemistry/structure effects is inconclusive to date
- Developing predictive understanding to mitigate cell-to-cell variability based on feedstock variations

Specific materials in study

Compositional, synthetic, and morphology variations

- Refining our focus, as you'll see
- Determine the relationship between specific chemical and morphological features of the materials produced by various vendors and the performance of these materials in solid oxide electrochemical devices
- <u>A lot</u> of variation in commercially available / received cathode powders

VENDOR	<u>COMPOSITION</u>	<u>SYNTHESIS (?)</u>
V1 a, b coarse/fine	$(La_{0.6}Sr_{0.4})_{0.95}Co_{0.2}Fe_{0.8}O_{3-\delta}$	SS + mill
V2 fine	(La _{0.6} Sr _{0.4}) _{0.95} Co _{0.2} Fe _{0.8} O _{3-δ}	combust
V3 (coarse)	(La _{0.6} Sr _{0.4}) _{0.95} Co _{0.2} Fe _{0.8} O _{3-δ}	Uncertain
V4 a, b, c (bimodal, varying)	$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3}$	Coprecip + sint

DIAGNOSTIC HALF-CELL TESTING PROTOCOL AND BASELINE PERFORMANCE FOR STATISTICAL COMPARISON

Understand and reduce variation contribution from

- Temperature
- Electrical contact
- Temporal variations in performance response
- Electrode design

Symmetric half-cell design

Mitigate contribution from temperature and contact variation; reduce complexity by using single gas environment

Protocol identifies initial performance at t=0

Decouple feedstock variation contributions from long term degradation mechanisms

Time intervals are not equivalent

- Typical time-dependent changes evolve from initial performance
 - Polarization resistance increases observed over days
 - -Transport mechanisms (E_a) does not appear to change

Established performance baseline

Statistical analysis based on repetitions provides baseline performance controlling for experimental variations

- Representative values derived from impedance measurements
- Sensitivity to electrode thickness and alignment can be resolved
- This baseline shows ~1% variation
- Typically < 2-3% variation observed in polarization conductance from other LSCF materials
- Very small variation in thermal activation energy
- But: User and potentiostat serendipitously observed

LINK MORPHOLOGY TO PERFORMANCE RELIABILITY - REVIEW

- Various synthetic routes for cathode powder synthesis, e.g., solid state vs. wet chemical
- Wide distributions of particle sizes, 10 nm to 10 μ m
- Variable aspect ratio / surface structure: primary & secondary particles

Techniques for fully describing initial morphology and evolution

 Scattering or diffraction techniques (ultra-small angle x-ray scattering); BET; Microscopy techniques

• Establish final morphology of electrode: complete description (ϵ , a, r, τ)

Microscopy of LSCF powders, one example

Complex morphology changes observed beyond size distribution

As Received

Sintered

Need to quantify initial state and evolution to sintered electrode state

Primary particle size comparison with secondary

Light scattering probes secondary (agglomerated) particles, whereas USAXS probes primary particles

all nominally 6428-LCSF with 5% A-site deficiency various synthetic techniques and morphologies

BET / PSA as-received materials

Surface area and PSA are not universally proportional

LINK CHEMISTRY TO PERFORMANCE RELIABILITY

EXAMINE THE LSCF MICROSTRUCTURE (AT THE UNIT CELL LEVEL), INVESTIGATE LSCF LATTICE DYNAMICS, AND DETECT/IDENTIFY/QUANTIFY SECOND PHASES

- high resolution x-ray diffraction (HR-XRD)
- Raman spectroscopy
- mid-infrared spectroscopy
- STEM

Unique lattice variationss in received a-site deficient LSCF samples

LSCF

Argonne

Degrees 2-Theta (Cu-ka1)

Received stoichiometric LSFC (V4) no distortion

Stoichiometric LSCF exhibits SrCO₃: no M₃O₄

Sr segregation clearly shown in a-site deficient LSCF, previously M₃O₄ spinel phase is present in a-site deficient LSCF

Summary of HR-XRD results

<u>VENDOR</u>	COMPOSITION	PROPOSED SYNTHESIS	LATTICE DISTORTION
V1 a, b coarse/fine	$(La_{0.6}Sr_{0.4})_{0.95}Co_{0.2}Fe_{0.8}O_{3-\delta}$	SS + mill	YES rhombohedral
V2 fine	$(La_{0.6}Sr_{0.4})_{0.95}Co_{0.2}Fe_{0.8}O_{3-\delta}$	combust	YES tetrahedral
V3 (coarse)	$(La_{0.6}Sr_{0.4})_{0.95}Co_{0.2}Fe_{0.8}O_{3-\delta}$	Uncertain	NO ?
V4 a, b, c (bimodal, varying)	La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O ₃	Coprecip + sint	NO
	 Designed compositional does not correlate as expected Widely varying, with slight distortions Need to look closer at existing operando data that we have 		

Raman spectra stoichiometric LSCF (V4)

Deconvolution for each gives same scattering behavior

Comparison with a-site deficient

Second phase is present in a-site deficient not in stoichiometric LSCF

Function	cm⁻¹	Height	Width	Area
G+L	378	143.1	29.4	4577
G+L	475	648.9	127.0	88027
G+L	573	1066.9	85.3	108426
G+L	657	220.3	60.6	14357
G+L	684	98.7	13.3	1398

Function	cm⁻¹	Height	Width	Area
G+L	373	141	27.4	4115
G+L	469	499	131.6	70078
G+L	568	899	69.4	88660
G+L	649	480	94.2	63470
G+L	795	108	120.5	13867

Function	cm ⁻¹	Height	Width	Area
G+L	377	53.9	22.6	1385
G+L	477	572.2	136.5	83255
G+L	577	861.2	81.4	85030
G+L	662	154.1	65.0	10669
G+L	688	104.3	15.0	1763
G+L	727	60.2	24.1	1719
G+L	818	13.9	15.4	236
G+L	840	37.4	13.5	536

Raman can investigated heterogeneous phase distribution

- Raman spectral map of an area on the rim of an V1a Cell cathode
- Observe (Co,Fe)₃O₄ crystallite approximately 5 μm in dimension
- The blue and red images for the two M₃O₄ bands lie on top of one another in the center of the map creating a purple-like color.

Distribution of Co-rich second phase validated

Clear evidence of " Co_3O_4 " second phase identified with STEM for a given LSCF source material

50nm

Note that Raman detects M₃O₄ phase, but is poor at detecting Sr-segregation products

This data summarize the quick diagnostic Raman is for the B-site rich spinel second phase. Known Sr-segregation needs another approach

Raman mapping of V2 samples: Searching for M₃O₄ and SrCO₃

Summary of Raman results

VENDOR	COMPOSITION	<u>PROPOSED</u> SYNTHESIS	<u>(Co,Fe)₃O₄</u>
V1 a, b coarse/fine	(La _{0.6} Sr _{0.4}) _{0.95} Co _{0.2} Fe _{0.8} O _{3-δ}	SS + mill	Yes, but inconsistent
V2 fine	(La _{0.6} Sr _{0.4}) _{0.95} Co _{0.2} Fe _{0.8} O _{3-δ}	combust	YES
V3 (coarse)	(La _{0.6} Sr _{0.4}) _{0.95} Co _{0.2} Fe _{0.8} O _{3-δ}	Uncertain	YES
V4 a, b, c (bimodal, varying)	$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3}$	Coprecip + sint	NO
	 Quick and low cost methodolo Clearly shows distortion – now 	gy v that we know to l	ook for it

Identifies B-site second phase species, but not Sr-phases •

Consider FTIR absorption spectra from impurity oxides

Doubtful to detect trace oxide impurities in LSCF materials using FTIR methods < 600 cm⁻¹

- Most of the IR active phonons of Fe, Sr, and La oxides are below 600 cm⁻¹
- SrCO₃ and SrO are positively identified ~ 860 cm⁻¹
- Calibration of for quantitative analysis of Sr phase is possible

FTIR of stoichiometric LSCF (V4), normalized

Clear evidence of SrCO₃

FTIR of stoichiometric LSCF (V4), normalized

Compared to a-site received deficient LSCF

	Lot No.	Particle Size D50	Specific Surface Area
		(μm)	(m²/g)
LSCF6428-A V4a	1	1.6	3.9
LSCF6428-B V4b	1	0.7	6.0
LSCF6428-C V4c	1	0.4	10.9

Calcining negates observation of SrCO₃

Summary of FTIR results

VENDOR	COMPOSITION	<u>PROPOSED</u> SYNTHESIS	<u>SrCO₃</u>
V1 a, b coarse/fine	(La _{0.6} Sr _{0.4}) _{0.95} Co _{0.2} Fe _{0.8} O _{3-δ}	SS + mill	YES
V2 fine	$(La_{0.6}Sr_{0.4})_{0.95}Co_{0.2}Fe_{0.8}O_{3-\delta}$	combust	YES
V3 (coarse)	$(La_{0.6}Sr_{0.4})_{0.95}Co_{0.2}Fe_{0.8}O_{3-\delta}$	Uncertain	YES
V4 a, b, c (bimodal, varying)	$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3}$	Coprecip + sint	YES

- All as received have ~2-6% of their Sr as SrCO₃
- Surface area dependent •
- The nature of Sr and persistence at calcination temperature is inconsistent Argonne

DECOUPLE CHEMISTRY AND MORPHOLOGY EFFECTS ON PERFORMANCE

Linking morphology and performance

δ is the characteristic length, L is the electrode thickness, τ is tortuosity, ε is porosity, a is the surface area, D^{*} oxygen chemical diffusivity, and k is the oxygen surface exchange rate

SB. Adler, J.A. Lane, B.C.H. Steele. *J. Electrochem. Soc.* 143(11), 3554-3564 (1996). SB Adler, *Solid State Ionics* 111(1–2), 125–134 (1998).

Electrode thickness effects

- different synthetic approaches and dramatic particle size distributions
- Nominally similar chemistries, phase distributions, etc.
- same synthetic methods followed by processing to decrease particle size
- Nominally similar chemistry, phase distribution, etc.

Open questions related to composition

- Understanding the evolution of phase impurities and cation distributions with initial sintering (and long term operation) to link to performance reliability
 - Does this affect the chemistry and catalytic behavior of ORR?
 - Does B-site segregation / 2nd phase result in performance degradation?
- Does as-received feedstock material chemistry or morphology affect this evolution?

LINKS ARE COMING TOGETHER:

- REFINE APPROACH TO SEPARATE CONTRIBUTION OF ${}^{(1-\varepsilon)}/_{\tau a}$ AND ${}^{D^*}/_k$ TO MACROSCALE ELECTRODE PERFORMANCE
- SYNTHETIC APPROACHES TO TEST HYPOTHESES OF LSCF STRUCTURE AND CHEMISTRY
- VERY LARGE VARIATION IN FEEDSTOCK
 POWDERS IS OBSERVED
- PERFORMANCE VARIATION IS CHALLENGING
 TO ASCERTAIN

Thank you...

- We great appreciate the U.S. Department of Energy, Office of Fossil Energy, Solid Oxide Fuel Cell Program
- Joseph Stoffa, SOFC project manager

- Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-06CH11357
- Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

