Abstract

Goals: a) Understand how operating conditions affect the performance of solid oxide fuel cells (SOFCs) with cathodes of lanthanum strontium manganite (LSM, (La1-xSr0.55Mn1.033O3±δ)) and yttria-stabilized zirconia (YSZ, (Zr1±δO2±δ)) at elevated-temperature open-circuit voltage (OCV) (zero current).

1. Reduced O\textsubscript{2} at the cathode, to intensify degradation of cathode performance.
2. Aging tests: to study the effects of service temperature and atmosphere at open-circuit voltage OCV(t) (zero current).
3. Current load cycling: to study the effects of current sweeps and EIS measurements on cell output.

As in the prior work, cells will undergo detailed microstructural characterization, using transmission electron microscopy (TEM), energy-dispersive x-ray spectroscopy (EDXS), and three-dimensional reconstruction (3DR), with sample preparation via focused ion-beam scanning electron microscopy (FIB/SEM), focusing on the following phenomena:

1. Changes in phase fraction and their distribution across the cathode, particularly densification/loss of porosity near the interfaces of the cathode with the electrolyte and the cathode current collector (CCC);
2. Changes in total and active three-phase boundary (TPB) density;
3. Formation and distribution of manganese oxides (MnO\textsubscript{x}), including MnO\textsubscript{3} phases and MnO\textsubscript{3}.

The new studies have the potential to improve the reliability and lifetime of SOFC technology.

Prior work: Durability tests; ASR vs. TPB density

Prior work: 3DR before & after accelerated testing, cathode B

Volume fraction profiles of the YSZ, LSM, and pore phases across the cathode.

As received	500h Accel test	624 hrs Accel test
volume fraction (%) | 29 | 25 | 25
porosity YSZ | 33 | 35 | 37
LSM | 38 | 40 | 38
particle diameter (μm) | 0.45 | 0.5 | 0.46
YSZ | 0.5 | 0.45 | 0.72
LSM | 0.65 | 0.7 | 0.72
normalized surface area (μm-1) | 13 | 12 | 11
YSZ | 16 | 13 | 13
LSM | 9 | 8 | 8
Total TPB (μm2) | 14.5 | 14.8 | 11
Active TPB (μm2) | 13.0 | 12.5 | 10

Microstructural parameters from 3D reconstructions of cathodes.

• All cathodes developed porosity gradients after 500 h of accelerated testing: lower porosity at the cathode / electrolyte interface than at the cathode / current collector interface.

• Cathode B showed less pore coarsening, less loss of pore area, and stabler TPB (total and active) than cathodes A and C.

New aspects of current project

• Possible outcomes from testing at low cathode pO\textsubscript{2}, -1
 - Higher ASR in durability testing
 - Higher cathode overpotentials (higher cathode peaks in Bode plots)

• Aging tests versus durability tests 2
 - Independent variables
 - Time at temperature
 - Air versus low pO\textsubscript{2}
 - Operation (durability tests) versus OC
 - Mn excess

• Possible outcomes from current load cycling 1
 - Step changes in ASR
 - Step changes in OCV

Acknowledgment: This research is based upon work supported by the U.S. Department of Energy, National Energy Technology Laboratory, under the SECA Core Technology Program (award number DE-FE0031189). This research is based in part upon work supported by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

References:

Cell details; test conditions

- Button cells: YSZ electrolyte + NiO-YSZ anode
- Cathodes: LSM + YSZ
 - A: (La\textsubscript{0.8}Sr\textsubscript{0.2}O\textsubscript{3−δ})MnO\textsubscript{3} (LSM 80–90)
 - B: (La\textsubscript{0.8}Sr\textsubscript{0.2}O\textsubscript{3−δ})MnO\textsubscript{3} (LSM 80–95)
 - C: (La\textsubscript{0.8}Sr\textsubscript{0.2}O\textsubscript{3−δ})MnO\textsubscript{3} (LSM 80–98)
- Accelerated test conditions: 1000 °C, 760 mA/cm2; ambient air; humidified H\textsubscript{2}, 50 sccm