Effect of Spinel Composition on Electrical Conductivity and Coefficient of Thermal Expansion in the (Ni,Co,Fe)₃O₄-Based System

David Chesson and Jiahong Zhu

Department of Mechanical Engineering, Tennessee Technological University, Cookeville, TN

Introduction

- Electrical contact layers are used to reduce the electrode/interconnect interfacial resistance.
- While Ni-paste/mesh is widely used to establish electrical contact on the anode side, finding a suitable material for electrical contact between the cathode and interconnect is challenging.

 Current Flow
 IC-Anode Contact (Ni Paste/Mesh)

 Ni/YSZ Cermet
 Ni/YSZ Cermet

 YSZ (Oxygen Ion Conductor)
 Sr-Doped LaMnO₃ (LSM)

 Fuel Flow
 Cathode
 IC-Cathode Contact

 Air Flow
 Cathode
 IC-Cathode Contact

 Interconnect
 Interconnect

 Cr-Containing Ferritic Alloys)

Issues with Current Contact Materials

The major issues for different cathode-interconnect contact materials:

- Noble metals
 - Pt & Au: too expensive
 - Ag: highly volatile
- Perovskites

- Difficult to balance the electrical conductivity, coefficient of thermal expansion (CTE), and sinterability:
 - (La_{0.6}Sr_{0.4})(Co_{0.8}Fe_{0.2})O₃ (LSCF) has higher coefficient of thermal expansion (CTE)
 - \succ (La_{0.8},Sr_{0.2})MnO₃ (LSM) possesses poor sinterability
- Spinels (Co,Mn)₃O₄, (Ni,Fe)₃O₄, NiCo₂O₄, etc.
 - Limited studies, poor sinterability

Why (Ni,Co,Fe)₃O₄-Based Spinel as Contact?

- Our recent studies indicate spinels based on (Ni,Co,Fe)₃O₄ thermally converted from the Fe-Ni-Co alloy powders are very promising candidates as cathode-side contact: lower area-specific resistance (ASR), excellent sinterability, and adequate CTE match with other cell components.
- Compositional optimization of (Ni,Co,Fe)₃O₄ based spinel is needed to further improve its electrical conductivity, while maintaining its CTE match with stack components & chemical compatibility with both interconnect/cathode.

Cell ASR at 800°C during Isothermal Exposure of Test Cells with Various Contact Precursors

Phase Diagram Determination

- The Fe-Ni-Co phase diagram was determined experimentally.
- Solid state sintering was used to synthesize the samples, which were annealed for 200 h at 800°C in air prior to SEM/EDS examination.
- The spinel compositions located in the red region co.,o was identified as being the most promising.

4-Probe Conductivity Measurement

 Test samples were fabricated via solid state sintering of precursor oxides mixed in proportions according to desired spinel composition.

Electrical conductivity was measured using the standard 4-probe method with a constant current of 100 mA at temperatures from 460 to 850°C.

Comparison of Electrical Conductivity for Different (Ni,Co,Fe)₃O₄ Compositions

- Conduction was largely dependent on the amount of excess Fe in the spinels.
- Co doping was not effective in increasing the conductivity.

Further Doping in the (Ni,Co,Fe)₃O₄ Spinel Effect o

Effect of Ti on Spinel Microstructure

- Binary Ni_{.84}Fe_{2.16}O₄ spinel was identified as the promising composition for further doping with minor amounts of Co, Mn, and Ti.
- Ti addition effectively improved the conductivity.
- Co/Mn addition individually performed poorly, while Co and Mn co-doping increased the conductivity.

Ti-Containing Second Phase Formation

- The grain boundary phase was semi-continuous within the sample.
- Activation energy of electrical conduction revealed that conduction was still controlled by the spinel phase.

- Co appeared to have a large densifying effect.
- Mn exhibited slightly improved densification.
- No second phase formation was observed.

- Ti appeared to improve the spinel density.
- A grain boundary phase was observed, which was the Fe-rich (Fe,Ti,Ni)₂O₃ perovskite.
- The grain boundary phase was responsible for higher conductivity.

Summary

- Fe-rich Ni_{.84}Fe_{2.16}O₄ exhibited the highest conductivity among the Fe-Ni-Co spinels; Co addition acted as buffer to primary conduction mechanism in ferrites.
- Co-Mn co-doping led to increased conductivity while individual Co- and Mn- doped samples showed decreased conductivity.
- Ti doping resulted in a mark increase in conductivity, which was due to conductive (Fe,Ti,Ni)₂O₃ grain boundary phase. This phase was discontinuous, so conduction was still controlled by the ferrite phase in the sample.
- All compositions showed adequate CTE matching with adjacent stack materials.

CTEs of Doped Fe-Rich Spinels

 Maintaining CTE match of the contact material with adjacent stack components is critical in reducing thermal stresses at various interfaces, which in turn increases thermal-cycling life of the stack.

Composition	Avg. CTE 20-800°C (ppm/°K)
Crofer APU 22	11.9
Ni _{.84} Fe _{2.16} O ₄	12.08
Ni _{.81} Ti _{.03} Fe _{2.16} O ₄	12.26
Ni _{.79} Ti _{.05} Fe _{2.16} O ₄	12.36
Ni _{.66} Mn _{.03} Co _{.15} Fe _{2.16} O ₄	11.55
Ni _{.64} Mn _{.03} Ti _{.02} Co _{.15} Fe _{2.16} O ₄	12.11

• The effect of the doping addition on the CTE of the spinel was minimal. All spinels had suitable CTE values for cathode-side contact application.

