

High Throughput, In-line Coating Metrology Development for **Solid Oxide Fuel Cell (SOFC) Manufacturing** DE-FE0031178 – 6/13/2018

2018 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting ¹Redox Power Systems, LLC. and ²National Renewable Energy Laboratory Sean R. Bishop¹ (PI), Silas Simotwo¹, Bryan Blackburn¹, Tom Langdo¹, Peter Rupnowski², Brian Green², Derek Jacobsen², and Michael Ulsh²

Introduction

Coating and interconnect cross-section

PNNL report ID: PNNL- 17568, May 2008

Protective coating on interconnect:

- Prevent electrode Cr poisoning: Barrier to Cr transport
- Prevent interconnect oxidation: Barrier of oxygen migration

 $(Mn,Co)O_4$ (MCO) is a commonly used barrier coating layer

Defects in coating inhibit coating and SOFC performance

 \rightarrow Need manufacturing-scale defect detection techniques

Metroloav techniaues state-of-the-art

Technique	Measured parameter	Automation for interconnect	Speed for large area scan	۲ des		
Tape peel test	Film adhesion	Yes	Fast			
Mass	Film thickness	Yes	Fast			
Scratch test	Film adhesion	Yes	Slow			
SEM/EDS/TEM	Cracks, pores, film uniformity, subsurface defects /composition	No	Slow			
XRF	Composition	Yes	Slow- Medium			
Indentation	Mechanical properties	Yes	Slow	Ро		
Ellipsometry	Film thickness	No, requires uniform substrate	Fast			
X-ray tomography	Microstructure	Yes	Slow			
X-ray diffraction	Composition	Yes	Slow			
Raman	Local atomic	Yes	Slow			
Spectroscopy	arrangement					

Project Goals and Approach

- Identify key interconnect coating and substrate defects that lead to coating failure;
- Assess capabilities of in-line metrology techniques, e.g., optical profilometry (Redox) and thermography (NREL), to probe defects;
- Demonstrate improved long-term performance of SOFC stacks

Technique	Measured parameter	Automation for interconnect	Speed for large area scan	No destr
Optical Profilometry	Cracks, pores, film uniformity	Yes	Fast	Y
Optical Reflectance	Cracks, pores, film uniformity	Yes	Fast	Y
Thermography	Cracks, pores, film uniformity, subsurface defects	Yes	Fast	Y

Most common

on-
ructive
Yes
Yes
No
No
Yes
ssibly
Yes
Yes
Yes

uctive

High resolution (1000x)

- at Redox
- Additional optical and thermography instrumentation at NREL
- Sample fabrication and characterization tools at Redox

Results

Intentionally scratched substrate coated with MCO

Substrate

- 4 scratches in stainless steel substrate (~2 cm x 3 cm) intentionally introduced
- Optical and height profile mapping can only detect two scratches
- Thermography detects all 4 scratches!

Peak identification using a height threshold

- Twice as many peaks uncovered in aged sample!
- Source of peaks and methods for mitigation under examination
- Currently evaluating detection scale-up to larger sample images

 High throughput and high magnification microscopy available

100

Time [h]

150

Area-specific-resistance (ASR) measurement of coating

- ASRs of ~50 m Ω cm² at 650 °C consistent with literature
- ASR typically exhibits a decrease with time – may be related to thermally induced coating densification

Future Work

• Evaluate thermography and optical techniques ability to characterize intentionally and unintentionally added defects (e.g., scratches, thickness gradients, porosity)

200

- Continue to identify key defects that form during SOFC-like annealing and correlate with processing conditions
- Demonstrate scale-up of defect detection techniques to in-line manufacturing conditions

Summary and Conclusions

- Determined preliminary defects of interest, includes: film thickness uniformity, bumps and dips, film porosity, and film cracks/scratches
- Demonstrated ability to detect large scratches with optical microscopy and profilometry
- Demonstrated ability to detect fine scratches in substrate not optically visible using thermography
- Used Keyence analysis software to detect and quantify peak/bump defects on coating using height threshold
- Observed a 2x increase in the number of peaks after aging film in SOFClike conditions
- Demonstrated ASR measurement of coatings, with results consistent with literature

Acknowledgement

The authors are grateful for financial support from DOE under contract DE-FE0031178 with program manager Seth Lawson (formerly Jason Lewis)

