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Scope of Work 

Core Technology Program: Materials Development
Cathode materials and interactions

Effects of volatile Cr compounds on cathode performance
Poster: LSM/YSZ Button Cell Tests in Cathode Air with Measured Cr Concentrations (John 
Hardy)

Improved density of ceria barrier layers
Mitigation of Cr poisoning

Evaluation of Cr capture materials
Poster: Cr Mitigation by LSCF-based Materials for Solid Oxide Fuel Cells (Matt Chou)

Cathode contact materials
Enhancing reliability of cathode/contact materials interfaces

Poster:  Composite Approach to Tailoring Thermal Expansion of LSCo-based Ceramic Cathode 
Contact for Solid Oxide Fuel Cell Applications (Matt Chou)

Interconnects/BOP
Reactive air aluminization

Poster: Long Term Stability Tests of Low Temperature and Standard Reactive Air Aluminization 
Process (Jung-Pyung Choi)



Scope of Work 

Core Technology Program: Modeling/Simulation
SOFC Stack and System Modeling Tool Development 

Poster: Advanced Reduced Order Model (ROM) Prediction and Error Quantification Framework for 
SOFC Stacks (Chao Wang)

Modeling of Stack Degradation and Reliability 
Poster: Optimal Operating Conditions for Performance and Reliability of Solid Oxide Fuel Cells (Kurt 
Recknagle)

Small-Scale SOFC Test Platform
Design and fabrication of SOFC power system for evaluation of performance and 
reliability of new stack technologies (1-10 kW)

Poster: Small-Scale Test Platform (SSTP) for SOFC Stacks (Brent Kirby)

Industrial Collaborations
Cummins/Ceres

Effects of Fuel Contaminants on Anode Performance
TCF Project: Protective Spinel Coatings
TCF Project: Air Braze Optimization

Poster: Air Braze Optimization for Markets Targeted by Aegis Technology, Inc. (John Hardy)



Cr Poisoning: PNNL Test Fixture Design 
(Not to scale)
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Assembled Cr Test Fixtures
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Electrochemical Button Cell Tests
LSM/YSZ Cathodes

LSM-20, A/B = 0.95
Tested at 850ºC

Cr concentration controlled by adjusting Cr2O3 source temperature and 
moisture content of air

Test Condition # of 
cells

Ave. Degradation
Rate (per kH)

First Round

No Cr 3 -0.2%

≤10 ppt Cr 2 2.2%

≤170 ppt Cr 3 3.9%

6.6-6.7 ppb Cr 2 13.2%

Second Round

≤43 ppt Cr 3 -0.8%

≤164 ppt Cr 3 4.9%

≤224 ppt Cr 2 3.9%



Mitigation of Cr Poisoning:
LSCF as Cr-gettering Material

SrCrO4 observed 
throughout LSCF 
cathode layer.

Potential Advantages
Sr segregation from structure
High electrical conductivity
Chemical compatibility
Thermal and phase stability
Reasonable mechanical strength
Tailorable La/Sr and Co/Fe ratios

Control Sr activity
Commercially available

4 Compositions evaluated
La0.8Sr0.2Co0.2Fe0.8O3

La0.6Sr0.4Co0.2Fe0.8O3

La0.4Sr0.6Co0.2Fe0.8O3

La0.2Sr0.8Co0.2Fe0.8O3



SrCrO4 wt% converted to Sr wt% then normalized with total Sr wt% 
in LSCF series as Sr % reacted.
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LSCF/Cr2O3 Reaction at 800oC:
Normalized Sr % Reacted
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Cathode Contact Development

Approach A: Impregnated Fibrous Substrates
Approach B: Composite Mixtures to Tailor CTE

σ = E Δα ΔT



Poor Thermal Cycle Stability of 
Ceramic Cathode Contact
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Brittle cathode contact: LSM20 Ductile cathode contact: Ag
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Approach A: Impregnated Fibrous Materials

Inert YSZ fibrous felt/woven cloth substrate
Impregnate with conducting LSM20 or LSCo phase via dip-coating

ZYF-50 (Y2O3 10 wt% stabilized ZrO2) 
(~0.05” thick, bulk porosity >96%)

ZYW-15 (Y2O3 10 wt% stabilized ZrO2) 
(~0.015” thick, square weave, bulk 

porosity >96%)
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Validation in a Generic Stack Fixture for 
Thermal Cycle Stability

Standard LSM-based cell (2”x2”) with 3x LSCo impregnated ZYW-30 woven cloth
First tested at 800oC and constant current for 1000h then thermal cycled for ~10 
times between ~50oC and 800oC 
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Effect of Thermal Cycling

Ag contactLSCo-impregnated YSZ cloth



Approach B: Minimize Residual Stresses with 
Tailored CTE 

LSCo20 perovskite offers high conductivity, but also very high CTE (~18x10-
6/oC), while CTE of typical cell and interconnect is 12-13x10-6/oC.
Composite approach incorporating low CTE mullite (3Al2O32SiO2 - 2Al2O3
SiO2): ~5.5x10-6/oC.

Turner’s model (considers 
hydrostatic stress only)
Kerner’s Model (hydrostatic + 
shear stress)

Measured values deviate from 
prediction at higher vol. fractions

Mullite received contains other 
phases (sillimanite and kyanite)



Effect of Isothermal Ageing at 800oC
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Thermal Stability

LSCo20:mullite at 1:1 ratio aged at 800oC for 12, 48, 200, and 500h in air
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Reactive Air Aluminization (RAA)

•Reaction between alkaline earths in glass seals and Cr in interconnect steel can form 
high CTE chromate phases (e.g., SrCrO4), which degrade interfacial strength

•Cr volatility from alloys can poison cathodes

•Reactive Air Aluminization (RAA) offers a simple alternative to controlled atmosphere 
aluminization of interconnects (and BOP components)



Low temperature RAA process

18

• Primary challenges to lowering process temperature using our standard slurry are 
incomplete/nonhomogenous alumina layer formation and excessive 
reaction/diffusion of Al into substrate

• Approach: Add additional elements to optimize oxidation kinetics and metal 
diffusion at lower temperatures (800-900°C) to form protective alpha alumina 
coating and “right-sized” Al reservoir in substrate to provide CTE gradient (to 
improve coating bond-strength) and self-healing capability.

• Results:
• Seed elements (Mn, Ti, or Fe) enhance formation of cubic gamma phase at 

lower temperatures, which then accelerates formation of desired alpha 
phase.

• Formation of thick gamma phase “egg shells” at  temperatures below the 
melting point of the aluminum powder prevents excessive release and 
diffusion of the molten aluminum into the underlying substrate. During dwell 
time at temperature (e.g., 900°C), transition from gamma to alpha alumina is 
completed.



Low temperature RAA process

Same magnification
100µm

800°C

Standard RAA at 1000°C



Long term stability test (Standard RAA)
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Co-free Electrically Conductive Protective 
Coatings

Objective: Develop Co-free, electrically conductive protective coatings for 
planar SOFC stack interconnects
Based on previous studies,* selected 3 ternary oxide systems for 
evaluation

Cu-Mn-O
Cu-Fe-O
Ni-Mn-O

Approach:
Examine powder synthesis options
Develop/optimize a cost-effective manufacturing process (aerosol spray)
Evaluate long-term and thermal cyclic behavior (in terms of electrical 
conductivity and surface stability) of these candidate materials on 
inexpensive ferritic stainless steel substrates

*A. Petric and H. Ling, J. Am. Ceram. Soc., 90, 1515 (2007); S. Hosseini, F. Karimzadeh, M. Enayati, and N. Sammes, 
Solid State Ionics, 289, 95 (2016); N. Hosseini, F. Karimzadeh, M. Abbasi, and G. Choi, Ceramics International, 40, 12219 
(2014); N. Hosseini, M. Abbasi, F. Karimzadeh, and G. Choi, J. Power Sources, 273, 1073 (2015); W. Huang, S. Gopalan, 
U. Pal, and S. Basu, J. Electrochem. Soc., 155, B1161 (2008); Z. Sun, S. Gopalan, U. Pal, and S. Basu, Surface & 
Coatings Tech., 323, 49 (2017); P. Wei, X.Deng, M. Bateni, and A. Petric, Corrosion, 63, 529 (2007); M. Bateni, P. Wei, X. 
Deng, and A. Petric, Surface & Coatings Tech., 201, 4677 (2007)



FY18 Modeling Focus

Recent modeling task activity continued to focus on linking model results 
across length scales

Utilize the Reduced Order Model (ROM) approach to improve the accuracy of 
power system models
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Modeling Presentation Topic Summary
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SOFC Modeling Tool Development
1. Response surface regression and error quantification
2. ROM tool for SOFC stacks
3. ROMs generated for NETL system analysis

Modeling of Stack Degradation and Reliability
4. Short-term and long-term mechanical reliability
5. Optimal conditions for short-term reliability



Introduction of ROM Framework
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• But how to select the best 
location to add additional 
design sites?

• Need smart sampling

• But how accurate is the 
prediction?

• Need error bar

Initial Kriging regression

Quantify the error of Kriging prediction

Smartly add sampling points 
to reduce Kriging MSE

Error bar



Framework to Minimize Regression Error

Demonstrate advantage of adaptive smart sampling 
versus traditional sampling using NGFC stack model 
Traditional sampling:

11k random samples 
Additional 1k samples for validation cases
Max voltage mean square error (MSE) of 3.0e-4

Adaptive smart sampling:
2k initial samples followed by MSE evaluation
Additional 2k targeted samples
Repeat iteration until desired MSE is reached

Same error achieved with ~30% less samples (<8k)

Number of Samples Maximum MSE MSE Ratio

2000 1.5e-3 487%

4000 4.2e-4 141%

6000 3.8e-4 126%

8000 2.9e-4 96%

Iterative 
Sampling 
Approach
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Prediction Evaluation
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ROM Error Quantification (cont’d)

Error quantification permits user to obtain the required ROM accuracy
Evaluated the impact of sample size on 95% confidence interval (CI)

Increase number of samples and perform cross-validation on maximum cell temperature
Results:

Increased number of sample size by 11X, 95% CI range is reduced by 3X
Prediction is more accurate and closer to true solution
Allows user to choose desired range of 95% CI   

Incorporating the error quantification framework in the ROM generation tool

June 22, 2018
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ROM Generation Tool

User interface for stack simulations and ROM generation on high 
performance computer (HPC)
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ROM Parameter Sensitivity Analysis
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Sensitivity scores
Deviation between ROM predictions and SOFC-MP simulation results 
after removing each input parameter
The parameter that induces the largest deviation after removing it from 
the ROM prediction has the highest sensitivity score (scaled to 100)

Output Parameters

In
pu

t P
ar

am
et

er
s

NG Inlet Temperature 
has little influence on 
most outputs.

Required Heat Exchanger 
Effectiveness depends strongly 
on amount of on-cell reforming.



ROMs for NETL System Analysis:
NGFC Material Flowchart
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Baseline model is natural gas fuel 
cell (NGFC) system

93% CH4 requires external reformer 

H2O 0.0%
Ar 0.0%

CO2 1.0%
O2 0.0%
N2 1.6%

CH4 93.1%
CO 0.0%
H2 0.0%

C2H6 3.2%
C3H8 0.7%

C4H10 0.4%

 
       

   

Average Current Density 2000-6000 A/m2

Internal Reforming 0-100%
Oxidant Recirculation 0-80%
Oxygen-to-Carbon Ratio 1.5-3.0
Stack Fuel Utilization 40-95%
Stack Oxidant Utilization 12.5-83.3%
Fuel/Air Inlet Temperature 550-800oC

ROM Input Parameters

NG Composition



ROMs for NETL System Analysis:
IGFC Material Flowchart
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Reduced CH4 composition of 
integrated gasification fuel cell (IGFC) 
syngas (6-32%) does not require the 
external reformer

Syngas Fuel Compositions
Conventional Enhanced Catalytic

H2O 0.1% 0.1% 0.0%
Ar 0.1% 0.1% 0.0%

CO2 20.4% 24.2% 34.7%
O2 0.0% 0.0% 0.0%
N2 0.6% 0.6% 0.7%

CH4 5.8% 10.2% 31.6%
CO 37.7% 34.1% 9.1%
H2 35.2% 30.6% 23.9%



ROM Usage for Power System Analysis

Collaborating with NETL on ROMs 
for different stack operating 
performance levels and systems

SOA atmospheric NGFC
Future performance NGFC with 
reduced activation/ohmic losses 

25%-75% reduction combinations
Pressurized NGFC
IGFCs
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Long-Term Stack Reliability:
Degradation by Grain Coarsening
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Baseline 3D model for single-cell, co-flow 
cell operating at 750°C average temperature.

Reliability evaluated at the beginning and end 
of operating life w/ grain coarsening.

Structural reliability increase is predicted  
after long-term degradation due to reduction 
in the stack peak temperatures and 
thermal gradients at end-of-life conditions.

33

Initial and Degraded stack component reliability



Parameter ranges selected to focus structural 
simulation cases near likely operating 
points from the NGFC pathway evaluations

Targeted 750°C average and 800°C 
maximum temperatures at 400 mA/cm2

SOA and future NGFC operations (100% IR)
Outputs of 2-D simulation sets show cathode 
inlet air temperature ranges can be focused 
down to a 50°C range

Use full range of fuel and air utilizations
Use three NG fuel compositions
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Set #1 Case Results

Short-Term Reliability Study: 
Scoping Simulations w/ 2D Model

See Poster: Optimal Operating Conditions for 
Performance and Reliability of Solid Oxide Fuel Cells 

Input Parameters for 3D Model Cases



Design of Experiments (DOE) Approach: 
Effect of Fuel Compositions & Geometry
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Fuel species entering the stack (high UF)

Species % Composition #1 Composition #2 Composition #3
60% IR, 2.1 OCR 60% IR, 2.6 OCR 100% IR, 2.1 OCR

H2O 32.65 41.44 36.25
Ar 0.02557 0.0243 0
CO2 15.65 19.22 22.79
O2 0 0 0
N2 0.5620 0.5356 0.6514
CH4 9.165 6.393 12.37
CO 10.77 8.304 7.259
H2 31.18 24.09 20.67
C2H6 0 0 0
C3H8 0 0 0
C4H10 0 0 0

Fuel flow rate, mol/s-cell (20x20 cm2 cell)
High UF 1.250E-03 1.792E-03 1.362E-03
Low UF 1.557E-03 2.447E-03 1.956E-03

Fuel Compositions and Flow Rates
(20% Pre-Reformed with Anode Recycle)

Cell Geometry

Co-Flow
Counter-
Flow

Cross-
Flow



Effect of Composition on Reliability

Significant variation in cell reliability for similar power output 
under varying combination of air temperature and fuel/air flow rates
Higher OCR fuel (with higher flow rates) increased reliability
Fuel with 100% internal reforming significantly increased reliability
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Tavg = 
789°C

Pf = 11.5%
54 MPa

Tavg = 
782°C

Pf = 5%
51.2 MPa

Tavg = 
763°C

Pf = 0.1%
34 MPa

Comp1: 60%IR, 2.1 OCR Comp2: 60%IR, 2.6 OCR Comp3: 100%IR, 2.1 OCR



Effect of Flow Configuration on Reliability
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P   =   132W
Tavg = 737°C
ΔT  = 112°C

44 MPa max, Pf = 0.2%

P   =   133W
Tavg = 732°C
ΔT  = 123°C

59 MPa max, Pf = 1.1%

Co-flow Counter-flow
Evaluated Composition 1 
(60% IR, 2.1 OCR) for co-
and counter-flow geometry
Similar power output could 
be produced in counter 
flow configuration with 
lower air temperatures
When same conditions of air 
temperature, air and fuel flow 
rates are maintained, the 
counter flow configuration 
produced lower Tavg but 
higher Pf because of 
increased temperature 
gradient across the cell.
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Desirability function approach 
to find optimal solution 
Optimization Constraints:

Power > 130 W
Pf < 5%
Tavg      < 750°C
ΔT not constrained

Optimal solution of D=0.87
Required Input: 

Tair = 675°C
mair =  21.26 slpm (AU≈15%)
mfuel =  2.8 slpm     (FU≈77%)

Optimal Output:
P     =   133.5W
Pf =    4%
Tavg =   729°C



FY18 Modeling Summary:
Accomplishments and Next Steps
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Accomplishments
Developed adaptive sampling approach to improve response surfaces
Used cross-validation technique to quantify the error distribution and 
generate point and interval estimates
Developed tools and user interface for high performance computing for 
stack simulations and ROM generation 
Provided ROMs to NETL for system design and COE analyses

SOA and future performance for different system configurations
Evaluated effects of operating conditions and flow geometry on electrical 
and structural performance

Identified local optimal condition for the cell based on mechanical reliability

Next Steps
Continue to work with NETL staff to use the modeling tools to help identify 
target performance goals for SOFC power systems.
Complete ROM tool GUI with error quantification this year
Incorporate structural reliability performance in the ROM tool



Summary
PNNL is using experimental and computational capabilities to accelerate the 
commercialization of SOFC power systems.

Posters
LSM/YSZ Button Cell Tests in Cathode Air with Measured Cr Concentrations (John Hardy)

Cr Mitigation by LSCF-based Materials for Solid Oxide Fuel Cells (Matt Chou)

Composite Approach to Tailoring Thermal Expansion of LSCo-based Ceramic Cathode 
Contact for Solid Oxide Fuel Cell Applications (Matt Chou)

Long Term Stability Tests of Low Temperature and Standard Reactive Air Aluminization 
(Jung-Pyung Choi)

Advanced Reduced Order Model (ROM) Prediction and Error Quantification Framework 
for SOFC Stacks (Chao Wang)

Optimal Operating Conditions for Performance and Reliability of Solid Oxide Fuel Cells 
(Kurt Recknagle)

Small-Scale Test Platform (SSTP) for SOFC Stacks (Brent Kirby)

Air Braze Optimization for Markets Targeted by Aegis Technology, Inc. (John Hardy) 40
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