Development of Chromium and Sulfur Getter for SOFC Systems

Prabhakar Singh

Department of Materials Science and Engineering Center for Clean Energy Engineering, University of Connecticut, CT

WORK PERFORMED UNDER AGREEMENT DE-FE-0027894

19th Annual SOFC Program Review Meeting June 15, 2018

Technical Contributors

UConn

Prabhakar Singh Boxun Hu Steven L. Suib Professor Assistant Research Professor Professor

Ashish Aphale Su Jeong Heo Junsung Hong Michael Reisert Junkai He Yanliu Dang Seraphim Belko Post-doctoral Fellow Graduate Student Graduate Student Graduate Student Graduate Student Graduate Student Undergraduate Student

Program Manager: Dr. Rin Burke, National Energy Technology Laboratory

Innovation and Impact

- We have developed hypothesis for the co-capture of both intrinsic (SO2) and extrinsic (CrOxHy) contaminants from ambient air has been validated.
- We have performed operando cell/getter tests confirmed performance stability with the use of cogetters.

2

- Stable ohmic and non-ohmic polarization
- Absence of contaminants in the cathode
 - Clean surface and interface
- We have synthesized getter materials and fabricated devices utilizing conventional ceramic processing techniques.
- Lessons learned from the Cr capture program capitalized for the selection, synthesis and testing of co-getters
- Lessons learned from the existing program provides a path forward for multi-impurity capture platform.

- Capture extrinsic impurities in BOP or in stack
 - · Chromium poisoning leading to the long term degradation in SOFC systems
 - · Permanent performance degradation
 - High polarization losses
 - Interfacial deposition limits the oxygen access at the triple phase boundary (TPB) sites

Program Objectives

The overall objective of the proposed research program is to develop cost effective co-getters for the combined capture of gaseous S and Cr species present in incoming air stream.

- Validate co-capture process thermodynamically.
- Develop, synthesize and test validate co-getters under SOFC operating conditions.
- Develop underlying mechanisms.
- Explore design and integration opportunities for the getters in SOFC system.

The developed approach will benefit high temperature electrochemical systems of interest to DOE in the field of power generation, gas separation and chemical conversion.

Outline

- Accomplishments
- Background
- Selection of Cr and S getter materials
- Experimental
 - Processes Development: High surface area (HSA) getter materials
 - Chromium Getter optimization: Computational Modeling
 - Evaluation of Co-getter performance
 - Characterization: SEM-EDX, XRD, EIS, FIB-TEM
- Results and Discussion
- Future Work
- Acknowledgements

Accomplishments-Technical

- Thermodynamic calculations based on Gibbs free energy change indicates co-capture of sulfur and chromium impurity in wide temperature range.
- SrMnO based getter has been synthesized and fabricated.
- Gas phase acidic airborne impurities react with basic air electrode constituents to form stable reaction products at the free surface and TPB.
- Getter has been validated electrochemically to demonstrate the successful capture of both Cr and S in gas phase at 850C.
- Posttest results from SEM indicates clean LSM/YSZ interface after 100 hrs of electrochemical test in presence of Cr and SO₂ vapor.
- SEM/EDS characterization of SMO getter reveals high concentration of S and Cr at the inlet of the getter and negligible concentrations at the center and the outlet of the getter, indicating complete capture.
 - Graduate / Undergraduate students being trained 3
 - Post-doctoral fellows: 2
 - Outreach: Middle and High School, Davinci Program, STEM
 - Publications and presentations: Journal articles and technical society meetings

Developed reaction mechanisms for the co-capture of Cr and S. Validated the getter operation by electrochemical and transpiration tests.
Fabricated getters show excellent blockage of Cr and S species from entering into cathode electrode.

Ambient Air Constituents

Gas	Concentration
Oxygen	20.9 v%
Nitrogen	78 v%
Water	<1 to 3 v%
Carbon dioxide	<mark>350 ppm</mark>
Sulfur dioxide	<mark><1 ppm</mark>
Noble gases	<1 v%
Particulate matter (PM)	<50 µg/m³

Air in fuel cell stack and system may also contain component derived impurities such as Cr (from metals and alloys) and Si, B, and alkali (from glass and insulation).

Presence of sulfur at the electrode/electrolyte interface leads to the formation of SrSO₄ and it can take place at the exposed surface or electrochemically active sites

 $SrO(s) + SO_2(g) + 0.5O_2(g) = SrSO_4(s)$

- Adsorption of SO₂ molecule takes place and it reacts with oxygen atom to form SO₄²⁻ ions in the lattice having high concentration of oxygen ion vacancy sites, leading to the rapid formation of SrSO₄ at the actives sites.
- The thermodynamic activity of SrO inside cathodes increases with decreasing oxygen potential near the interface and promotes the SrSO₄ formation leading to the reduction in the area of the active region thereby increasing the polarization resistance.
- The incorporation of SO₂ is difficult to eliminate due to strong chemical bond forces and this results in the overall irreversible performance degradation.

SOFC System : Intrinsic and Extrinsic Air Impurity Sources

Chemical Nature of Impurities

Airborne Gaseous Impurities interacting with SOFC Cathode

Gas Phase SO₂ and Cr Species: Reaction Products Stability

• Thermodynamic calculations show that SrO based getter is capable to capture both Cr (extrinsic) and SO₂ (intrinsic) impurities in gas phase in wide temperature range.

• Significant reduction in Cr and SO₂ vapor pressure is observed in presence of SrO.

Co-Capture of Cr and SO_x on Metal Oxides

- Sr-Ni-O, Sr-Mn-O, Sr-Fe-O perovskite type compounds with relatively high electrical conductivity are the potential coating materials for getter application.
- CaO and MgO are considered.
- The oxidation of both Cr vapor and SO₂ occurs the most by SrO getter material over a wide temperature range.

Co-stability calculated based on Gibbs free energy and equilibrium constant

Thermodynamic Calculations: Vapors at High Temperatures

• SrO is better than CaO, and MgO as a getter material for Cr and S capture.

• SrO is capable of forming SrCrO₄ and SrSO₄ compounds at extremely low concentrations of Cr and SO₂ vapors, even below 1 ppb.

Fabrication of SMO Getter

Fabrication process

- Preparation of aqueous solution (strontium nitrate + manganese carbonate)
- Dip coating of cordierite substrate
- Vacuum infiltration
- Heat-treatment at 1200°C for 3 hours in air
- Repetition of the process to have thick coating layer

Getter Validation Using Half-Cells

Schematic of Experimental Test Setup

Experimental Matrix

Test #	SMO getter (with S & Cr)	With S & Cr	With S only
Materials	LSM/YSZ/Pt	LSM/YSZ/Pt	LSM/YSZ/Pt
Getter	With SMO getter	No getter	No getter
Cr Source	Cr ₂ O ₃ pellets	Cr ₂ O ₃ pellets	-
S Source	Various SO ₂ concentration	Various SO ₂ concentration	Various SO ₂ concentration
Atmosphere	Air + 3% H ₂ O	Air + 3% H ₂ O	Air + 3% H ₂ O
Flow rate	150 sccm (C) / 50 sccm (A)	150 sccm (C) / 50 sccm (A)	150 sccm (C) / 50 sccm (A)
Temp.	750 °C	750 °C	750 °C
Applied bias	- 500 mV	- 500 mV	- 500 mV

Electrochemical Performance

• The LSM/YSZ/Pt half-cell exposed to 3% H₂O/air in the presence of Cr & SO₂ vapor with SMO getter shows a stable performance in I-t curve.

• Nyquist spectra shows reduction in the polarization resistance over the time with constant ohmic resistance.

Electrochemical Performance

The LSM/YSZ/Pt half-cell exposed to 3% H₂O/air in the presence of Cr & SO₂ vapor with SMO getter shows a stable performance in I-t curve.

Electrochemical Performance

Test #	SMO getter (with S & Cr)
Materials	LSM/YSZ/Pt with SMO getter
Cr Souce	Cr ₂ O ₃ pellets
Base atmosphere	Air + 3% H ₂ O
Atmosphere 1 Atmosphere 2	Cr_2O_3 pellets (120h) 4 ppm SO ₂ + Cr ₂ O ₃ pellets (100 h)
Flow rate	120 sccm (C) /50 sccm (A)
Temp.	700 °C
Applied bias	- 500 mV

For the test with SMO getter, there was no degradation in the electrochemical performance.

Posttest Characterization of SMO Getter by EDS

50 -

- EDS analysis on the getter along the hole

	■— Cr ●— S
SMO getter (with S & Cr)	
LSM/YSZ/Pt with SMO getter	
Cr_2O_3 pellets	
here Air + 3% H ₂ O $\underbrace{5}_{10}$	
$\begin{array}{ccc} 1 & Cr_2O_3 \text{ pellets (120h)} \\ 2 & 4 \text{ ppm } SO_2 + Cr_2O_3 \text{ pellets (100 h)} \end{array} \qquad \begin{array}{c} \mathbf{r} \\ \mathbf{r} \\$	
120 sccm (C) /50 sccm (A)	
700 °C	
is - 500 mV	
0 1000 2000 3000 4000 5000 Distance from inlet (um)	40000
$\begin{array}{c c} & Cr_2O_3 \text{ pellets} \\ \hline \text{here} & Air + 3\% \text{ H}_2\text{O} \\ \hline 2 & 1 & Cr_2O_3 \text{ pellets (120h)} \\ \hline 2 & 2 & 4 \text{ ppm SO}_2 + Cr_2O_3 \text{ pellets (100 h)} \\ \hline 120 \text{ sccm (C) } /50 \text{ sccm (A)} \\ \hline 700 \ ^{\circ}\text{C} \\ \hline 1s & -500 \text{ mV} \end{array}$	5000

- Sulfur and chromium were detected within first 4500 µm from inlet, based on EDS analysis.

There found no S and Cr at the outlet of the getter. -

Base

Posttest Characterization – LSM/YSZ Interface

Test #	With S & Cr	
Materials	LSM/YSZ/Pt	
Getter	SNO getter	
Cr Source	Cr ₂ O ₃ pellets	
S Source	150 ppb SO ₂	
Atmosphere	Air + 3% H ₂ O	
Flow rate	150 sccm (C) / 50 sccm (A)	
Temp.	750 °C	
Applied bias	- 500 mV	
Time	100 h	

SEM/EDS of posttest LSM/YSZ interface shows no/ negligible concentration of S and Cr.

Cell Exposure to Cr/S vapor - Interface

Test #	With S & Cr	
Materials	LSM/YSZ/Pt	
Getter	No getter	
Cr Source	Cr ₂ O ₃ pellets	
S Source	150 ppb SO ₂	
Atmosphere	Air + 3% H ₂ O	
Flow rate	150 sccm (C) / 50 sccm (A)	
Temp.	750 °C	
Applied bias	- 500 mV	
Time	100 h	

Sulfur elements are also deposited in the interface between LSM and YSZ.

19 11

4.70

11.7 13.0

Lsec: 30.0 862 Cnts 5.390 keV Det: Octane Plus

Cell Exposure to Cr/S vapor - Surface

Test #	With S & Cr	
Materials	LSM/YSZ/Pt	
Getter	No getter	
Cr Source	Cr ₂ O ₃ pellets	
S Source	150 ppb SO ₂	
Atmosphere	Air + 3% H ₂ O	
Flow rate	150 sccm (C) / 50 sccm (A)	
Temp.	750 °C	
Applied bias	- 500 mV	
Time	100 h	

• SEM/EDS shows the Sulfur elements are detected on the small particle.

Cell Exposure to Cr/S Vapors - EDS mapping

Cr/S vapor (No getter)

TEM/EDS mapping shows sulfur elements are detected on the surface as well as interface between LSM and YSZ. Cr elements are dominated in the interface.

Test # Materials

Getter

Cr Source

S Source

Atmosphere

Flow rate

Temp. Applied bias

Time

100 h

Cr Deposition in LSM/YSZ Interface

Only Cr vapor (No S, No getter)

Cross sectional FIB-STEM micrograph and mapping of LSM/YSZ interface after Cr poisoning at 650C

(a) TEM image of region of the chromium deposition taken along [110], (b) The corresponding FFT pattern (c) HRTEM image of the crystalline and (d) the atomic model illustrated.

- FIB-STEM and mapping reveals deposition of chromium at LSM/YSZ interface
- HRTEM results show it is rhombohedral Cr_2O_3 (space group R-3c, no. 167)

Conclusions

- Gas phase acidic airborne impurities react with basic air electrode constituents to form stable reaction products at the free surface and TPB.
- Gr II Alkaline earth and transition metal oxides have been selected as potential getter materials as they offer oxide basicity and ability to capture acidic impurities.
- Thermodynamic calculations based on Gibbs free energy change indicates co-capture of sulfur and chromium impurity in wide temperature range.
- SrMnO based getter has been synthesized and fabricated.
- Getter has been validated electrochemically to demonstrate the successful capture of both Cr and S in gas phase at 850C.
- Posttest results from SEM indicates clean LSM/YSZ interface after 100 hrs of electrochemical test in presence of Cr and SO₂ vapor.
- SEM/EDS characterization of SMO getter reveals high concentration of S and Cr at the inlet of the getter and negligible concentrations at the center and the outlet of the getter, indicating complete capture.

Acknowledgements

- Financial support from the US DOE under federal grant DE-FE 0023385
- > Dr. Rin Burke for guidance
- UConn for providing laboratory support

SOFC Program Review Meeting 2018

Thank you

Background: Getter

A list of Cr getter properties against the state of the art Cr poisoning mitigation and getter materials

Cr getter critical property	Performance of new Cr getter against baseline state of the art Cr getter	Test conditions
		(Temp, time, atm)
Phase Stability	Superior: New Cr getter shows no phase changes and interaction with humidity and CO2	RT-980C, Ambient air
	present in air.	
Reaction products	As processed getters consist of several oxide phases containing Sr and Ni (Sr9Ni7O21,	Powder synthesis process and transpiration, electrochemical
	Sr4Ni3O9 and Sr2Ni4O5).	testing at 850C for up to 500 hrs in Air -3%H2O
Microstructures	Stable powder, coating and substrate microstructures obtained New Cr getter retains its	During processing up to 980C in air
	microstructure after high temperature exposures (850C) in humidified air. Literature	During bench top testing at 850C for up to 500 hrs in humid air
	review does not provide background information on the SOTA.	
Thermochemistry	Similar or Superior: Based on thermochemical models developed	
Physical Properties	Similar or Superior: Based on resistance to ambient air (NAAQS)	
Product morphology	Porous powder coating on ceramic substrates	During processing up to 980C in air
		During bench top testing at 850C for up to 500 hrs in humid air
Cr Conc. profile	Superior: Capture Cr in the first 1500 - 3000 micron.	During bench top testing at 850C for up to 500 hrs in humid air
	Reproducible results	
Substrate	Configuration include honeycomb, foam and fibrous structure, Substrate materials include	
	Cordierite, Mullite, zirconia and alumina.	
Ease of fabrication	Conventional powder preparation and coating techniques	

Long term SOFC Degradation – Role of Cathode

Intrinsic + system generated extrinsic air impurities

