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Project strategy:
Develop in-line gas sensor for real-time SOFC diagnostics and enhancement of operation reliability

Project approach:  
Implement bio-inspired multivariable gas sensors for multi-gas quantitation at high temperatures
Perform laboratory optimization followed by field validation

Phase 1 outcomes:
Fundamental understanding of performance and  development of design rules of multivariable gas 
sensors at high temperatures

Project overview

This year top FIVE accomplishments
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$ 250K 
instrument

Unmet need for real-time monitoring 
of H2 and CO gases

Status quo:
Mature traditional detector 

concepts
Performance need:
Multi-gas discrimination

Our approach:
Multivariable photonic gas 

sensors

Real-time knowledge of H2/CO ratio (3:1–2:1) of anode tail gases:
• will allow control of efficiency of reforming process in the SOFC system
• will deliver a lower operating cost for SOFC customers

In-line gas detection is not straightforward
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Biomimicry –
imitation of biological 
systems

Bioinspiration –
new functionality, beyond Nature

High temperature
Biomimetics –
recreation of observed functionality

Room temperature

Learning from Nature

1 µm

500 nm

2 mm

1 µm

Potyrailo, Carpenter, et al., J. Opt., 2018

Potyrailo et al., Nat. Commun. 2015

Potyrailo et al., Nat. Photon. 2007
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Performance need:
Multi-gas 

discrimination

Our approach:
Multivariable 
gas sensors

blank
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Free gas 
molecules

Potyrailo et al.  Nature Photonics 2007
Potyrailo et al., Proc. Natl. Acad. Sci. U.S.A. 2013
Potyrailo et al.  Nature Communications   2015

Design rules for gas-selectivity control
• Spatial orientation of surface functionalization
• Chemistry of surface functionalization
• Extinction and scattering of nanostructure

Multi-gas detection 
using 

bio-inspired multivariable 
photonic sensors
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300 650Wavelength (nm)

Differential reflectance 
ΔR(λ) =100% R(λ)/R0(λ)

R(λ)  = sensor with analyte
R0(λ) = sensor with blank 
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Advancing design rules of nanostructures 
for high temperature gas-sensing applications

Selectivity control for 
vapors at room temp.

Selectivity control for 
gases at high temp.

Interference 
rejection control

•Polymeric nanostructure

•Absorption and adsorption 
of vapors

•Multi-material inorganic 
•nanostructure

•Catalytic reactions of gases

•Inorganic nanostructure

•Catalytic reactions of 
gases

500 nm500 nm1 µm

Potyrailo, Karker, Carpenter, Minnick, 
J. Opt., 2018

Potyrailo,  Chem. Rev. 2016Potyrailo et al., Nat. Commun. 2015
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Diverse spectral response 
facilitates discrimination between different gases
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Gas-discrimination control

100

Lamella 
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150 200

75 100 125 150 Simulation data 
with SiO2 lamella

Diverse spectral response using different lamella spacing 
for discrimination between different gases
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Sensitivity boosted by seven fold by
• material selection 
• 3D structure design

Sensitivity control

Initial 3D

Improved 3D

Exposure to 8% H2
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Example of H2 detection
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H2 spectral response H2 response: dynamics

Diverse spectra and dynamics uncover different response mechanisms in nanostructure
Potyrailo, Karker, Carpenter, Minnick, J. Opt., 2018
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CO spectral response CO response: dynamics

Diverse spectra and dynamics uncover different response mechanisms in nanostructure

Example of CO detection

Potyrailo, Karker, Carpenter, Minnick, J. Opt., 2018
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Initial stability tests: univariate response

Peak position of one of spectral bands 
in a planar (control) sensor film

Experiment
H2, % = 5, 8, 12, 15, 20
Number of cycles = 10 
Test duration = 17 days 
replicates n = 10

Calibration curve over 
17 days of testing
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Tests with a planar sensor film and analysis of univariate (single output) response 
allows determination of sensor stability using classical methods
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ROC curves 
with initial sensor stability at day 1

Receiver Operating Characteristic (ROC) curves
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ROC curves illustrate the diagnostic ability of the developed sensor 
to reliably detect gas concentrations
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Car driving modes

Software-driven boost of system performance

Smart phones: 
zoom, brightness control

Smart phones:  
face recognition

Consumer products

Electronics analytics

• Principal component analysis (PCA)
• Discriminant Analysis (DA)
• Artificial Neural Network (ANN)
• Hierarchical cluster analysis (HCA) 
• Support Vector Machines (SVM)
• Independent Component Analysis (ICA)
• Partial least squares (PLS) regression
• Principal Component Regression (PCR)

Potyrailo Chem. Rev. 2016
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Multivariate data analysis 
e.g. PCA = Principal Components Analysis

Raw spectra PCA-processed

PCA

PCA – “classic” tool for reduction of data dimensionality and noise

PC = 
principal 
component

Poor sensitivity
Good selectivity

Good sensitivity
Poor selectivity

Good sensitivity
Good selectivity

2-D response 
dispersion
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Different spectral regions of optical response of a single sensing to H2 and CO 
gases should allow discrimination of two gases 

Spectral response to H2
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Initial discrimination 
between individual and mixtures of H2 and CO gases
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Different spectral regions of optical response of a single sensing to H2 and CO 
gases allow discrimination of two gases 
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PCC / PFA = 1.0 / 0 PCC / PFA = 0.9 / 0.002 PCC / PFA = 0.7 / 0.03

No added noise Added 0.001 noise Added 0.002 noise

Wavelength Wavelength Wavelength 

0.98

1

1.02
D

el
ta

 R
 

0.98

1

1.02

D
el

ta
 R

 

0.98

1

1.02

D
el

ta
 R

 

1

3

5

b

6

4

2

Predicted gas composition
1 3 5b 6421 3 5b 6421 3 5b 642

1

3

5

b

6

4

2

1

3

5

b

6

4

2

Predicted gas composition Predicted gas composition

Ac
tu

al
 g

as
 c

om
po

si
tio

n

Ac
tu

al
 g

as
 c

om
po

si
tio

n

Ac
tu

al
 g

as
 c

om
po

si
tio

n

Blank
H2 1
H2 2
CO 1
CO 2
H2 + CO 1
H2 + CO 2

b
1
2
3
4
5
6

Probability

0

1

PCC = probability of correct classification;   
PFA = probability of false alarm

Confusion matrix analysis 

Visualization of quality of prediction of classes

Gas 
compositions



R.A. Potyrailo 2018     20Public   Copyright © 2018 General Electric Company  - All rights reserved 

Time

19 days 
with total of 75 cycles of H2 exposures

H2
0  1  2  3

H2 test cycle

Long-term response stability testing
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H2 test cycle
H2 conc. = 5, 10, 15 %
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Planar sensor film and analysis of multivariate (many wavelengths) response 
allows determination of sensor stability using new machine learning methods
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Raw sensor response to H2: effects of drift

650 nm

750 nm

Diverse temporal profiles of drift   - possibility for drift correction ?
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Conventional technique

New technique

Predicted H2 concentrations 

H2 conc. = 5, 10, 15 %

Drift correction became a reality using new machine learning  tools
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Developed data analytics technique improved the prediction ability of the sensor
in detecting and quantifying a single gas 

by more than 10 fold

Conventional technique

New technique
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Benchmark 
instrument
system

Sensor under 
development

Initial tests of multivariable sensor
at the SOFC factory at GE–Fuel Cells LLC

Benchmark system:
Rosemount Analytical 
(Model X-STREAM 
Enhanced XEXF)
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Spectrograph

Light
source

Gas flow cell

Data acquisitionGas in  

Light in/out  

Fiber-optic 
reflection probe

Details of multivariable sensor
at the SOFC factory at GE–Fuel Cells LLC

Gas 
flow cell

Laboratory components for testing of performance of 3D fabricated nanostructure
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Sensing chip in gas cell 
with white light illumination
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In-situ spectral collection
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Spectral features of 3D fabricated nanostructure 
are preserved in the gas cell design for field use
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Initial tests of developed 3D sensing nanostructure 
at the SOFC factory at GE–Fuel Cells LLC
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Diversity of spectral features of 3D fabricated nanostructure
For independent quantitation of several gases with a single sensor
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Summary of photonic multivariable gas sensors:
developed capabilities

Next steps:
• Summarize and document developed design rules for photonic multivariable 

sensing at high temperature
• Complete validation of developed multivariable sensor at the SOFC factory at 

GE–Fuel Cells LLC

This year top FIVE accomplishments
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