Innovative, Versatile and Cost-Effective Solid Oxide Fuel Cell Stack Concept

Nguyen Q. Minh

Center for Energy Research University of California, San Diego La Jolla, California

19th Annual Solid Oxide Fuel Cell Project Review Meeting Washington, DC June 13-15, 2018

Innovative, Versatile and Cost-Effective SOFC Stack Concept Project

- <u>Project</u>: Innovative, Versatile and Cost-Effective Solid Oxide Fuel Cell Stack Concept (DE-FE0026211)
- <u>Project Objective</u>: Develop and evaluate a versatile stack configuration based on a prime-surface interconnect design that can incorporate different types of cell construction for a broad range of power generation applications
- <u>DOE/NETL Project Manager</u>: Dr. Patcharin Burke
- UCSD Project Team:
 - Center for Energy Research: Dr. Nguyen Minh (PI), Dr. Yoon Ho Lee (Postdoctoral scholar), Dr. Tuyen Tran (Visiting scholar)
 - Department of Electrical Engineering and Center for Memory and Recording Research: Dr. Eric Fullerton, Haowen Ren (graduate student)
 - Department of NanoEngineering: Dr. Shirley Meng, Erik Wu (graduate student

Stack Design

Incorporating Conventional Cells

Features of Stack Concept

- Reduced weight and volume
- Flexibility in gas flow configuration
- Reduced stacking performance losses
- Improved sealing
- Versatility in incorporation of different types of cell construction

STACK DESIGN CONCEPT

Prime-Surface Interconnect Design

Cross Section

Stack Design Incorporating Sintered Cells

Not in Scale

Stack Design Cross Flow Gas Manifolding

Not in Scale

Stack Design

Incorporating Metal-Supported Cells

Project Technical Activities

- Prime surface interconnect design and fabrication development
- Metal-supported cell structure development
- Stack development
- Stack operation demonstration
- Stack cost assessment

PRIME SURFACE INTERCONNECT DEVELOPMENT

Preliminary Interconnect Design Assessment

Preliminary design assessment in terms of

- Flow distribution
- Mechanical loading
- Current collection

Prime Surface Interconnect Design for Formability Evaluation

Dimension: Length x Width x Thickness	60mm x 60mm x 2.5mm
Thickness of the interconnect plate	0.3mm
Total height of the interconnect	2.5mm
Length of the interconnect	60mm
Width of the interconnect	60mm
Diameter of the cones at the base level	4mm
Cone angle	60 degrees
Mass of the interconnect	7.66 gram

Mechanical Loading Investigation

Interconnect Formability Investigation

- Hydroforming
- Stamping

Interconnect Stamping Investigation

Key parameters investigated

- Height of interconnect,
- Thickness of interconnect,
- Distance between valley and hill,
- Cone angle.

Stamped Interconnect

Interconnect with 2.5 mm in height

- Significant thinning
- Breakage at corners

Interconnect with 2 mm in height

- Small thinning
- Well-formed egg-carton shape

Interconnect with 1 mm in height

- No thinning
- Not well-formed eggcarton shape

Preliminary Stamped Interconnect Characterization

Interconnect with 2 mm in height after firing under load at 750 °C for 5 hours

Interconnect with 2 mm in height after firing under load at 800 °C for 5 hours

> no change on shape of egg-cartoon interconnects after sintering at 750 °C and 800 °C for 5 hours under load of 3 pounds (load of 100 cells and 100 interconnects)

METAL-SUPPORTED CELL STRUCTURE FABRICATION

Sputtering Process

Sputtering for SOFC Cell Fabrication

• Fabrication of dense and porous layers

Nano-scale Dense YSZ layer

Scalability

Goldstone Vacuum Sputter System http://www.goldstone-group.com/

Sputtering Target by AZO Materials http://www.azom.com/

 Potential cost effectiveness

Weimar et al, PNNL Report PNNL-22732, 2013

Cell Components and Single Cells Fabricated by Sputtering

(on Si wafers)

Dense YSZ Layer

Surface

Porous Ni-YSZ Layer

Porous LSCF-YSZ Layer

Single Cell

Porous LSC-YSZ Layer

Single Cell Fabrication

on Metal Substrate

Single Cell Fabrication Scaleup

Dense Layer (2) 1um

Cell Edge Seal

Single Cell Fabrication

on Anodizing Aluminum Oxide (AAO) Substrate

AAO Microstructure

Single Cell

Cell Test Setup

Cell Open Circuit Voltage

Time (sec)

900

Initial Cell Performance

Pt/YSZ/Ni-YSZ

Single Cell Performance

on New AAO Substrate

Single Cell Microstructure

(on new AAO Substrate)

Cell Performance

Best performance reported on YSZ based cells at these temperatures

Summary of Key Results

- Preliminary interconnect design assessment and initial fabrication
- Demonstration of sputter processes for fabrication of cells with required microstructures and initial demonstration of process scaleup
- Demonstration of best performance to date for YSZ-based cells at reduced temperatures (1.3W/cm² at 600°C)

Near-Term Future Work

- Prime surface interconnect development
 - Continue evaluation of stamping of egg carton shaped interconnect and characterize fabricated samples
 - Modify and optimize design and fabrication processes
- Metal-supported cell structure development
 - Optimize sputtering process and characterize fabricated cells
 - Demonstrate fabrication scale-up and performance of scaleuped single cells
 - Fabricate single cells on metal supports with openings
- Stack development
 - Initiate assembling of stacks incorporating prime surface interconnects

Acknowledgments

- DOE/NETL SOFC project management, especially Dr. Patcharin Burke
- UCSD SOFC project team