METAL-SUPPORTED CERIA ELECTROLYTE-BASED SOFC STACK FOR SCALABLE, LOW COST, HIGH EFFICIENCY AND ROBUST STATIONARY POWER SYSTEMS

Charles Vesely – Cummins Inc Bal Dosanjh – Ceres Power Ltd

14-June-2018

Unlimited Rights Data

Agenda

- Cummins' emerging SOFC strategy
- Ceres SOFC pedigree & sample data
- FE27844 Objectives
- 5kW building block fundamentals
- Acknowledgements

cummins Cummins' Market Segments aligned to Fuel Cells Mining Marine Rail Oil & Gas Defense **Commercial & Mission Critical Prime Power** Components Consumer Industrial **Unlimited Rights Data**

Cummins Evaluation Of Data Center Applications

- Evaluation of Microsoft's vision for data centers of the future at small scale
- First phase of evaluation commenced October 2017
- Ceres and Cummins DoE demonstrator engineered for Microsoft's operational and physical targets

Ceres Power

- Unique Fuel Cell Technology
- 50 patent families
- 144 employees

World leading developer of SteelCell[®] low cost, non combustion power generation technology

- High efficiency distributed generation
- Lowers CO2 emissions
- Improves Air Quality
- Provides energy security
- Enables EV's and balances renewables
- Uses existing fuel infrastructure today, e.g. Natural Gas, bio fuels and H2 ready

CeresPower[®]

DEVELOPMENT PARTNERS

- HONDA
- NISSAN
- Honda Power Systems several applications
- SOFC Stack to Extend Range of Electric Vehicles

- Data Centre & Commercial Scale Opportunity
- CONFIDENTIAL PARTNER 1
- Commercial Scale CHP Development with aim to market launch
- **CONFIDENTIAL PARTNER 2** European-based Global OEM co-developing multi-kW prototype for multiple applications

 Strategic collaboration – buses and other China markets - targeting equity investment and JV

Version 5.0 Cell Technology Performance Uplift vs. Current Production Design

Steel Cell Stacks are robust to On-Off thermal cycles

>3600 thermal cycles

Robustness to Redox cycles and E-stops demonstrates world class results

FE27844 Objectives

Development of:

- Complete internal fuel reforming capability
- Larger active cell area to achieve integrated, compact, low cost 5kW stack
- Integrated 5 kW modular stack platform scalable from 5 100kW
- 5 kW FCPS demonstrator utilizing integrated 5 kW modular stack platform

Demonstration of:

- 5kW FCPS performance through minimum of 1,000 hours of real-time testing:
 - Galvanostatic Degradation: <0.5%/1000hrs
 - Robustness: >10 on/off cycles; >5 emergency stops (e-stops)
- Cost modelling to show system cost of \$1,500/kW (2011 currency basis) achievable at production volumes
- Predictive modelling using demonstration test results to show system lifetime robustness capability of:
 - Galvanostatic Degradation: <0.1%/1,000hrs
 - Robustness: >2,000 on/off cycles ; >60 e-stops
- Partnership with PNNL for anode poison sensitivity
- Partnership with UConn for cathode poison robustness
 Unlimited Rights Data

- Complete
- Complete
- Complete
- Dec 2018

- Dec 2018
- Dec 2018
- In progress

- Complete
- Complete
- In progress
- In progress

Internal Reforming Proven

Simulated 100% Internal reforming

1kW Large Area Cell Prototype Short Stack Built & Tested

- Increase in active area is a factor of ~3 from the cell used in current stacks
- Fluid manifolds are designed for up to 250 cell layers in a stack
- First of a kind developed to prove concept

Larger Cell Area Roadmap

Ceres plans a step by step approach to deliver larger area cells

DoE / Cummins Project Demonstrator

5kW stacks

- Data Centre compatible
- >60% electrical efficiency
- predicted
- Unit size : Depth 1.25m,
- Width 0.6m, Height 1.9m

DoE / Cummins Project Demonstrator

Upgrade Path Engineered in from the Get-Go

Unlimited Rights Data

Next Gen Stacks Satisfy Microsoft Durability Targets

Demonstrator System - Top Level Assembly

Unlimited Rights Data

Hot Balance of Plant – Fuel Cell Module Weldments

PEKO Precision responsible for execution of detailed design & system build

5kW Stack

5kW Stacks now built and on test at CPL

Unlimited Rights Data

Progress & Accomplishments

- Large area short stack designed built and tested
- Internal reforming proven
- Demonstrator system detailed design successfully completed with PEKO Precision
- PEKO Precision progressing system build for testing in Q3 2018
- Poison work progressing to plan with UConn & PNNL
- Good team working dynamic

Next Steps

- Complete demonstrator system build and shakedown
- Commission demonstrator system
- Complete demonstrator system evaluation at UConn
- Conclude cathode & anode poison work
- Continue to develop pipeline of activities beyond end of DoE project

Acknowledgements

- The work summarized in this paper was funded by the U.S. Department of Energy's Solid Oxide Fuel Cell Program.
- NETL: Patcharin Burke, Angela Bosley, Shailesh Vora, Joseph Stoffa
- PNNL: Jeffry Stevenson
- University of Connecticut: Prabhakar Singh