SOFC Development Update at FuelCell Energy

Hossein Ghezel-Ayagh (PI)

19th Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting Washington, DC

June 13, 2018

SOFC Technology Development & Deployment Roadmap

 Ongoing technology development and system field testing is laying the foundation for cost-competitive DG and centralized SOFC power systems

Cell and Stack Technology Overview

Cell:

- Planar anode supported
- 0.6 X 254 X 254 mm with 550 cm² active area
- Manufactured by tape casting, screen printing and co-sintering

Stack:

- Ferritic stainless steel sheet Interconnect
- Compressive ceramic seal
- Integrated manifolding with formed flow field layers
- 120 Cells in a standard stack with 16 kW output @ 160 A

Stack Repeat Unit

З

Advances in Cell Technology: Redox Tolerance Improvement

- A wide range of anode microstructures with enhanced mechanical properties were studied for improvements in redox tolerance
- Redox tolerance improved from 15% performance loss (baseline cell) down to 0.2% loss after 6 redox cycles with varying extent of nickel oxidation within the anode

Multi-prong approaches were implemented to reduce anode strain upon Ni reoxidation for achieving improvements in redox tolerance

- Accelerated tests showed:
 - Baseline TSC3 cell failed after 5 redox cycles
 - Recent cell with modified anode structure is still running well after 10 redox cycle

- Redox cycle conditions designed for accelerated degradation:
 - Polarization curves to 0.74 A/cm²
 - 10 thermal cycles red lines
 - 10 redox cycles green lines

- Modified redox tolerant cell (right) is fully intact
- Autopsy showed no sign of cracks and no oxidation in active area

- Standard cell (left) failed catastrophically after 5 redox cycles
- Autopsy showed broken cell with significant oxidation

In-House Interconnect (IC) Coating

- Studied both in-situ and ex-situ MCO applications as protective layers for cathode interconnects
- A 16 cell stack using baseline 550cm² TSC3 cells with alternating interconnect coatings was used to provide behavioral comparison of the two types of coatings
- Ex-situ MCO coatings provided better protection against Cr evaporation and lower performance degradation rate as compared to in-situ coatings

—In-Situ MCO Coating (Cells 1,3,5,7,9,11,13,15,16)

4000

5000

6000

7000

—Ex-Situ MCO Coating (Cells 2,4,6,8,10,12,14)

Elapsed time (hours)

-Cathode Humidity, mole% H2O

3000

0

1000

2000

Facility Upgrade

Enhanced Cathode Performance Stability Using Atomic Layer Deposition (ALD)

- Recent cell and stack design/manufacturing advances incorporated into 80-cell stack
- Ongoing testing at system conditions shows 0.4%/1000 hours degradation rate

Test in Progress

200 kW SOFC System

•				
	Normal Operating Conditions			
SOFC Gross Power			Rated Power	
DC Power	225.0	kW	244.0	kW
Energy & Water Input				
Natural Gas Fuel Flow	19.7	scfm	21.6	scfm
Fuel Energy (LHV)	323.2	kW	355.5	kW
Water Consumption @ Full Power	0	gpm	0	gpm
Consumed Power				
AC Power Consumption	10.8	kW	12.5	kW
Inverter Loss	11.3	kW	12.2	kW
Total Parasitic Power Consumption	22.0	kW	24.7	kW
Net Generation & Waste Heat Availability				
SOFC Plant Net AC Output	203.0	kW	219.3	kW
Available Heat for CHP (to 48.9°C)	84.7	kW	90.8	kW
Exhaust Temperature - nominal	370	°C	370	°C
Efficiency				
Electrical Efficiency (LHV)	62.8	%	61.7	%
Total CHP Efficiency (LHV) to 48.9°C	89.0	%	87.2	%

200 kW SOFC System Performance Summary

200 kW system is designed to validate stack reliability and scalability of stackmodule design

200kW SOFC Power System Layout

- Includes (2) 100kW SOFC stack modules designed to operate independently
- Factory assembled & shipped as a standard ISO 20' x 8' container

200 kW System Stack Manufacturing

- Excellent stack to stack performance reproducibility
- Stacks for 200 kW system meet cell voltage criteria
- Stacks shipped to FCE Danbury, CT and integrated into 100 kW modules

100 kW Module Design & Fabrication

- Fully integrates all hot BoP equipment within the module
- Eliminates high-temperature plant piping & valves
- Reduces Cr evaporation protective coatings within plant/module
- Integrated anode blower & module-specific instruments greatly decreases plant footprint

200 kW BoP Fabrication

Stack Module Integration

200 kW Bop

100 kW Stack Module

100 kW Stack Module Integration

Tw

Two 100-kW stack modules have been incorporated within the 200 kW system BoP, resulting in one transportable integrated system

200 kW SOFC System Factory Testing

200 kW system installed at FCE's Danbury, CT Test Facility. Factory Acceptance Testing is underway.

Example of 100kW Stack Module Acceptance Test Results

Screen Shot of the Power Plant HMI

200 kW System Demonstration Site Preparation

Next Generation Stack Technology

Baseline Large Area Stack (LAS):

- 76 W/kg
- 185 W/L

Broporty	CSA Stack Scale			Commonte	
Property	Short	Mid	Full	Comments	
Cell count	45	150	350		
Fuel cell voltage, V	38	128	298	At 0.85 V/cell	
Stack Power, kW	0.9	3.0	7.0	At 0.29 A/cm ²	
Height, mm	91	211	440		
(in)	(3.6)	(8.3)	(17.3)		

19

• 780 W/L

CFD Model of CSA Stack

Example Fuel Cell Run 68%Uf 40%Ua 25% internal reforming, 0.3 A/cm²

- Fully coupled CFD/electrochemical CSA stack model was developed
 - Full stack (lumped porous body model)
- High current operation and complex geometry of CSA stack requires large number of calculations
- ANSYS HPC Pack licensing and cluster computing services were used to run the model

350-cell stack Select cell layers shown

Automated Work Cell for CSA Stack Fabrication

Automated work cell commissioned for:

- Stack builds
- Cell and interconnect
 QC

Current production rates achieved equivalent of up to 4 stacks per shift/day

CSA Stack Fabrication

 Initial stacks of new design (CSA Stack) has been built and tested in both fuel cell and electrolysis modes

- Very strong utilization performance (>900 mV) at 80% fuel utilization at 0.25 A/cm²
 - Demonstrates good flow distribution and even thermal conditions within the stack

- Good performance and stability
- Tight voltage spread shows good flow distribution
- Aggressive thermal conditions (lower air flow, lower pressure drop)

CSA Stack Factory Cost Estimate as a Function of Production per Year

Cell	 New redox tolerant cell stability was demonstrated after 10 redox cycles ALD coated cathode materials showed improved endurance In-house developed ex-situ MCO coating showed significant protection against Cr poisoning
Stack	 Baseline stack tested for >11000 hours showed <0.4%/kh degradation rate 17 baseline stacks were fabricated for a 200 kW SOFC power plant Initial trials of next generation CSA stacks have been successful
System	 2 stack modules were built each with 8 stacks of 120 cells Factory tests of the 200kW SOFC system was initiated Preparation of the demonstration site for the 200kW SOFC system was completed

The progress in SOFC technology was supported by DOE/NETL Cooperative Agreements: DE-FE0011691, DE-FE0023186, DE-FE0026199, and DE-FE0026093

Guidance from NETL Management team: Shailesh Vora, Joseph Stoffa, Patcharin Burke, and Heather Quedenfeld

