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Process may be tailored to produce a variety of precast 
concrete/concrete masonry products
Initial product is hollow-core block (concrete masonry 
units), which follow ASTM C90 performance criteria:
• Compressive Strength (> 13.8 MPa)
• Density (determines weight classification)
• Water absorption (< 320 kg/m3)
• Physical appearance/dimensional tolerances

Preliminary lifecycle analysis (LCA) indicates ~ 65 % 
CO2 emissions reduction relative to conventional CMU

Project overview and milestones

CO2 mineralization process
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Motivation and project objectives

Low-carbon concrete products

Reaction kinetics, heat/mass transfer, and component strength
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Concrete, a mixture of portland cement, aggregate, and water is indispensable in construction (> 30 billion tons produced / year).A But nearly 1 ton of CO2 is

emitted for each ton of portland cement produced (> 4 billion tons / year),A accounting for around 8 % of global CO2 emissions.B The vast concrete market

provides an impactful sink for CO2 emissions, which may be fixed within solid products by thermodynamically favorable CO2 mineralization reactions.

1. Upcycle industrial wastes and CO2 – Produce low-carbon CO2Concrete products from coal combustion residues, flue gas CO2, and low-grade waste heat

2. Design CO2 mineralization system – Produce data supporting heat and mass balances for design of a “bolt-on” system at coal-fired power plants

3. Field test system using real flue gas – Fabricate and field test a CO2 mineralization system to consume about 100 kg of CO2 per day from coal flue gas
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• Portlandite (hydrated lime, Ca(OH)2) is a highly efficient reactant for CO2 mineralization (CO2 uptake 0.59 g/g) that is also abundant and near cost-equivalent to cement
• Fillers may include coal combustion residues (CCRs) such as ASTM C618 non-compliant fly ashes, which are not typically usable in concrete mixtures
• “Green bodies” are non-strengthened, but shape-stable components that may have their surfaces exposed to flue gas to promote CO2 mineralization reactions
• Flue gas pre-conditioning is limited to changing the temperature and/or relative humidity of the gas stream – CO2 enrichment/capture or pressurization are unneeded
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Conversion limits and kinetics of 
CO2 mineralization reactions:

Process design is informed by data
describing the CO2 uptake of alkaline
solids (e.g., Ca(OH)2 and fly ashes
(FA)) in contact with simulated flue
gases of varying temperature, relative
humidity (RH), and CO2 concentration
(near atmospheric pressure).C,D,E

Heat generation and transfer in
CO2Concrete components:

Exothermic portlandite carbonation
and cement hydration reactions
generate heat that contributes to
temperature rise and vaporization of
water. A finite element model (FEM) is
being developed to predict gradients
in block properties that may result.

Effects of microstructure and pore
saturation on carbonation:

The liquid water saturation (Sw) in
porous cementing microstructures
influences the rate and extent of CO2

uptake. Reducing Sw increases CO2

uptake until a critical limit of ≈ 0.1 is
reached, below which carbonation is
water-limited.F

Computational fluid dynamics (CFD)
modeling for reactor design:

The design of flue gas handling and
distribution equipment within the CO2

mineralization / curing chamber is
informed by CFD simulations. In this
way, the effects of various shelving
and block arrangements on flow
uniformity may be evaluated.

Compressive strength performance
of dry-cast CO2Concrete products:

The compressive strength of concrete
is a critical performance metric.
CO2Concrete formulations exceed the
strength requirements of relevant
product standards (e.g., ASTM C90)
immediately after processing by
optimizing process conditions.F
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