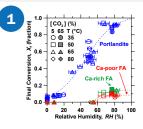


A Scalable Process for Upcycling Carbon Dioxide (CO₂) and Coal Combustion Residues into Construction Products

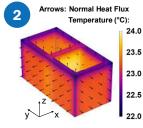
Gabriel Falzone,¹ Iman Mehdipour,¹ Gaurav Sant,¹ Brian Turk,² Raghubir Gupta²

¹ UCLA Samueli School of Engineering, University of California, Los Angeles (UCLA), Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
² Susteon Inc., 10 Placid Court, Durham, NC 27713, USA (http://susteon.com/).

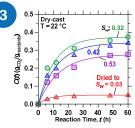
Motivation and project objectives


Concrete, a mixture of portland cement, aggregate, and water is indispensable in construction (> 30 billion tons produced / year).^A But nearly 1 ton of CO_2 is emitted for each ton of portland cement produced (> 4 billion tons / year),^A accounting for around 8 % of global CO_2 emissions.^B The vast concrete market provides an impactful sink for CO_2 emissions, which may be fixed within solid products by thermodynamically favorable CO_2 mineralization reactions.

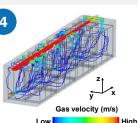
- 1. Upcycle industrial wastes and CO₂ Produce low-carbon CO₂Concrete products from coal combustion residues, flue gas CO₂, and low-grade waste heat
- 2. Design CO₂ mineralization system Produce data supporting heat and mass balances for design of a "bolt-on" system at coal-fired power plants
- 3. Field test system using real flue gas Fabricate and field test a CO₂ mineralization system to consume about 100 kg of CO₂ per day from coal flue gas


- Portlandite (nydrated lime, Ca(OH)₂) is a highly efficient reactant for CO₂ mineralization (CO₂ uptake 0.59 g/g) that is also abundant and near cost-equivalent to c
 Fillers may include coal combustion residues (CCRs) such as ASTM C618 non-compliant fly ashes, which are not typically usable in concrete mixtures
- "Green bodies" are non-strengthened, but shape-stable components that may have their surfaces exposed to flue gas to promote CO₂ mineralization reactions
- Flue gas pre-conditioning is limited to changing the temperature and/or relative humidity of the gas stream CO₂ enrichment/capture or pressurization are unneeded

Reaction kinetics, heat/mass transfer, and component strength


Conversion limits and kinetics of CO_2 mineralization reactions:

Process design is informed by data describing the CO₂ uptake of alkaline solids (e.g., Ca(OH)₂ and fly ashes (FA)) in contact with simulated flue gases of varying temperature, relative humidity (RH), and CO₂ concentration (near atmospheric pressure).^{C.D.E}


Heat generation and transfer in $CO_2Concrete$ components:

Exothermic portlandite carbonation and cement hydration reactions generate heat that contributes to temperature rise and vaporization of water. A finite element model (FEM) is being developed to predict gradients in block properties that may result.

Effects of microstructure and pore saturation on carbonation:

The liquid water saturation (S_w) in porous cementing microstructures influences the rate and extent of CO_2 uptake. Reducing S_w increases CO_2 uptake until a critical limit of ≈ 0.1 is reached, below which carbonation is water-limited. F

Computational fluid dynamics (CFD)

The design of flue gas handling and

distribution equipment within the CO₂

mineralization / curing chamber is

informed by CFD simulations. In this

way, the effects of various shelving

and block arrangements on flow

modeling for reactor design:

uniformity may be evaluated.

25 pry-cast pr

Compressive strength performance of dry-cast CO₂Concrete products:

The compressive strength of concrete is a critical performance metric. $CO_2Concrete$ formulations exceed the strength requirements of relevant product standards (e.g., ASTM C90) immediately after processing by optimizing process conditions.^F

and Conversion Limits of Alkaline Solid Reactants/Monoliths (Manuscript in preparation), 2019. Moisture Affect Strength Gain in Portlandite-Enriched Composites That Mineralize CO₂, ACS Sustainable Chem. Eng. **2019, 7 (15), 13053–13061**.