

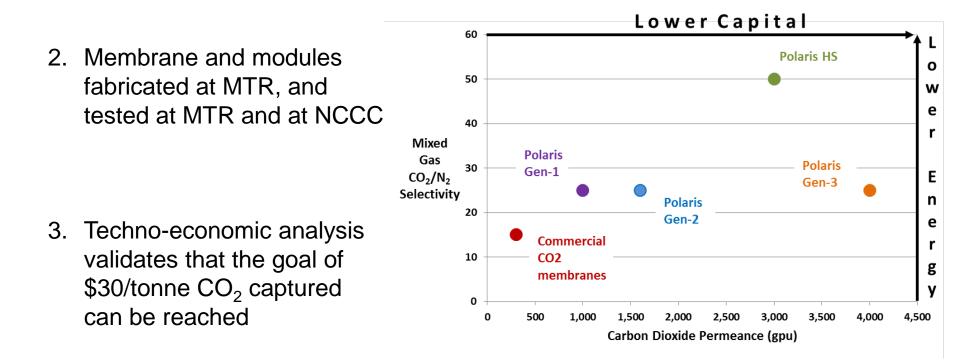
Development of Self-Assembly Isoporous Supports Enabling Transformational Membrane Performance for Cost Effective Carbon Capture (DE-FE0031596)

Hans Wijmans Membrane Technology and Research, Inc. Haiqing Lin University of Buffalo (New York University)

> Project Kick Off Meeting WebEx September 24, 2018

Outline

- Project overview slides
- Technology background
 - Composite Membranes
 - Support Membranes
 - Selective Materials
- Project tasks, timeline



Project Overview

- Award Name: Development of Self-Assembly Isoporous Supports Enabling Transformational Membrane Performance for Cost Effective Carbon Capture (DE-FE0031596)
- **Project Period:** June 1, 2018 May 31, 2021
- **Funding:** \$2,905,620 DOE; \$726,805 cost share (MTR and University of Buffalo)
- DOE Project Manager: José Figueroa, Bruce Lani
- Participants: Membrane Technology and Research, Inc., University of Buffalo
- Project Objectives:
 - Develop supports for composite membranes with highly regular surface pore structures that eliminate the restriction on diffusion in the selective layer that is present with current generation supports
 - Develop improved selective materials with higher permeance and/or higher selectivity compared to the current generation Polaris material
- Project Plan:
 - **BP1:** Lab-scale support development, screening of novel selective materials
 - BP2: Commercial-scale support development, scale up of 5 selective materials, composite membrane optimization
 - BP3: Commercial-scale composite membrane development, lab-scale module testing at MTR, bench-scale module test at NCCC

Project Success Criteria

1. Composite membranes produced with transformational performance, based on improved supports and improved selective materials

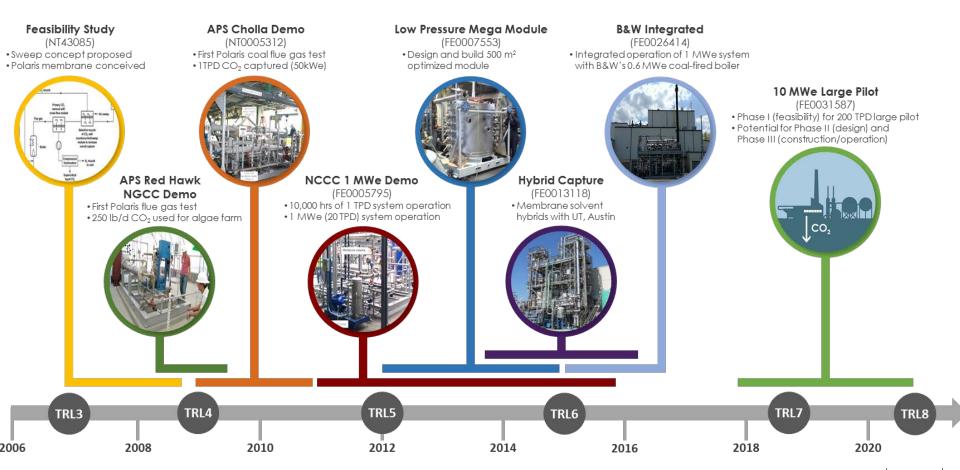
Project Objectives

Budget Period 1 (Year 1)

- Complete a detailed technology maturation plan for MTR Polaris membrane CO₂ capture technology showing a route to commercialization at \$30/tonne CO₂.
- Composite membrane produced with dual-layer isoporous support and Polaris material has minimum mixed-gas performance values of CO₂ permeance = 3,000 gpu and CO₂/N₂ = 20.
- Films of transformational membrane materials (NYUB) have minimum pure-gas CO_2/N_2 selectivity = 50

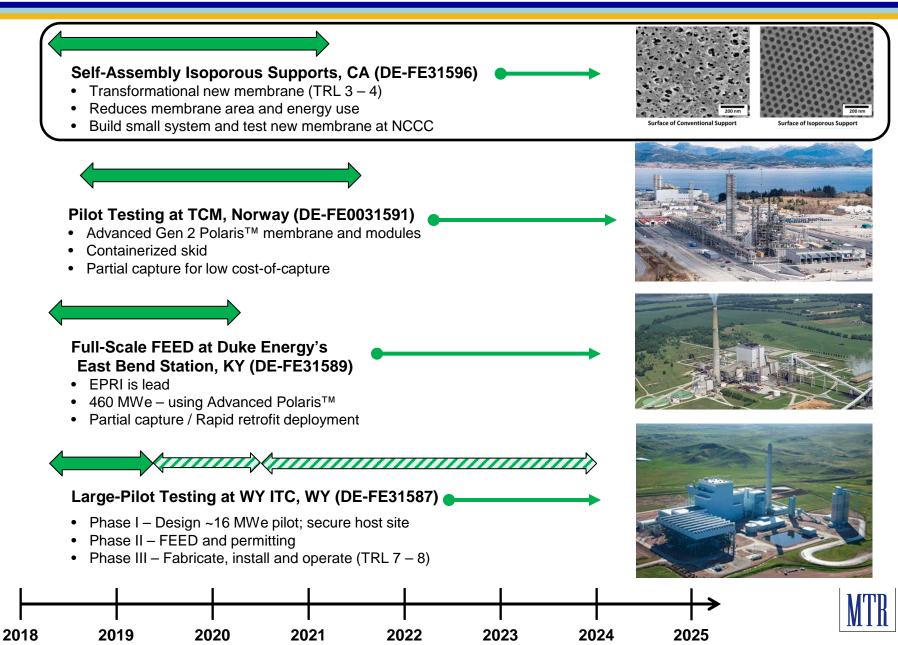
Budget Period 2 (Year 2)

- Composite membrane produced with dual-layer isoporous support and Polaris material has minimum mixed-gas performance values of CO₂ permeance = 4,000 gpu and CO₂/N₂ = 25.
- Composite membrane produced with dual-layer isoporous support and NYUB material has minimum mixed-gas performance values of CO₂ permeance = 3,000 gpu and CO₂/N₂ = 40.
- Modules prepared with composite membranes and have pure-gas CO_2/N_2 selectivities within 10% of membrane selectivities.


Budget Period 3 (Year 3)

- Bench-scale system containing transformational membrane modules is built and testing completed at NCCC. System performance (CO₂ removal, pressure drops, etc) is consistent with modeling predictions and mixed-gas tests performed at MTR.
- Updated techno-economic analysis report completed; analysis includes transformational membrane properties developed in this project and confirms the potential to achieve \$30/tonne CO₂.
- Complete a technology gap analysis report of the MTR Polaris membrane CO₂ capture process to determine components or systems that should be the focus of future development efforts.
- Environmental health and safety risk assessment report shows negligible chemical emissions due to the membrane capture system and >10% lower water usage compared to conventional capture technology.

Roles of Participants


- Membrane Technology and Research:
 - Project lead and liaison with DOE
 - Development of isoporous supports and support scale up
 - Composite membrane development and testing
 - Membrane module development and testing, including at NCCC
- University of Buffalo, New York University (Professor Lin):
 - Development and testing of novel high ether content polymers
 - Supply of monomers and polymers to MTR
- Professor Lynd (University of Texas at Austin):
 - Consulting services on block copolymer chemistry and self-assembly

MTR/DOE CO₂ Capture Development Timeline

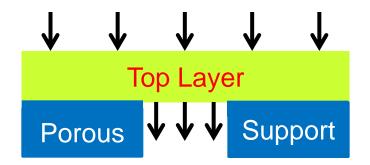
MTR

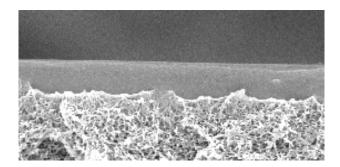
New MTR/DOE Projects

8

Membrane Gas Separation Background

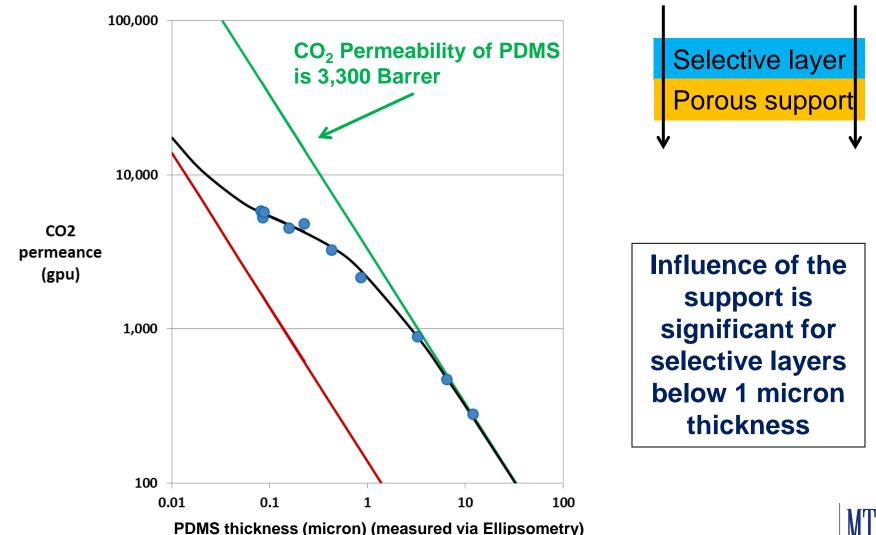
Membranes separate via selective permeation of molecules through a selective layer consisting of a polymer.


Membrane Permeance = $\frac{\text{Permeability of Selective Layer}}{\text{Thickness of Selective Layer}}$ Membrane Selectivity for A over B = $\frac{\text{Permeance of A}}{\text{Permeance of B}}$

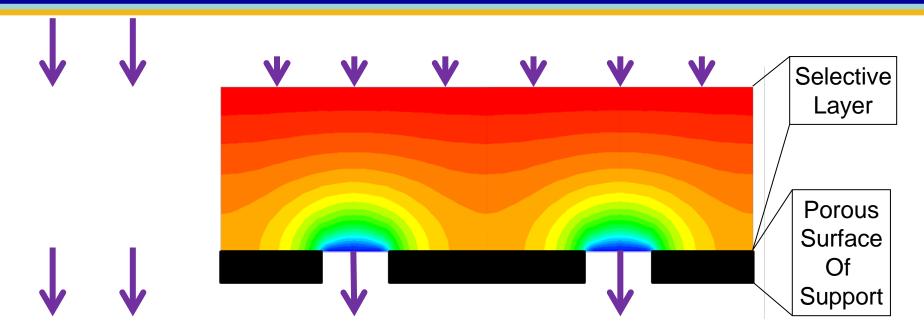

Membrane Optimization:

- Select materials with high selectivities
- Select materials with high permeabilities
- Make the selective layer as thin as possible

Influence of the Porous Support on Composite Membrane Performance


- Transport through the porous support membrane is only through the pore openings, which restricts the diffusion process in the top layer
- The porous support membrane itself is assumed to have negligible resistance to transport
- Lonsdale *et al* were the first to consider the pore restriction effect ("Transport in composite reverse osmosis membranes", chapter in "Membrane Processes in Industry and Biomedicine", M. Bier (Ed.), Plenum Press, New York, 1971)

Improving manufacturing techniques are producing very thin top layers

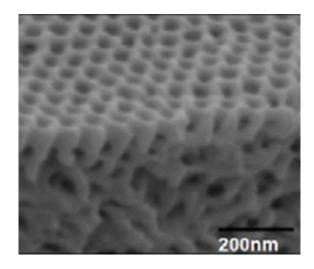

Restriction effect is becoming significant

The Issue: Reducing the Thickness of the Selective Layer Improves Permeance, but Less than Expected

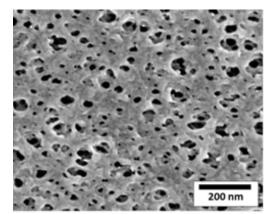
Analysis of Support Influence using Computational Fluid Dynamics

What the CDF results tell us:

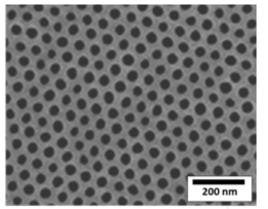
- Currently used supports reduce membrane permeance by several factors if the selective layer is thinner than one micron
- Higher porosities and smaller pore sizes reduce this effect (as expected)
- Uniform distribution of the pores is VERY beneficial in reducing the effect (this is a new observation)



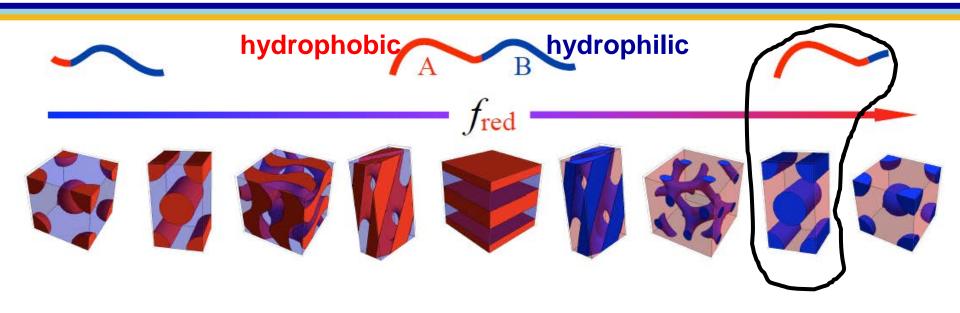
Highly Ordered Surfaces can be Obtained by Combining Self-Assembly and Phase Inversion


Asymmetric superstructure formed in a block copolymer via phase separation

KLAUS-VIKTOR PEINEMANN, VOLKER ABETZ* AND PETER F. W. SIMON Institut für Polymerforschung, GKSS-Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht, Germany *e-mail: volker.abetz@gkss.de


- Amphiphilic Block Copolymer in mixed solvent, evaporation step followed by immersion precipitation
- Creates top surface with highly ordered porous structure

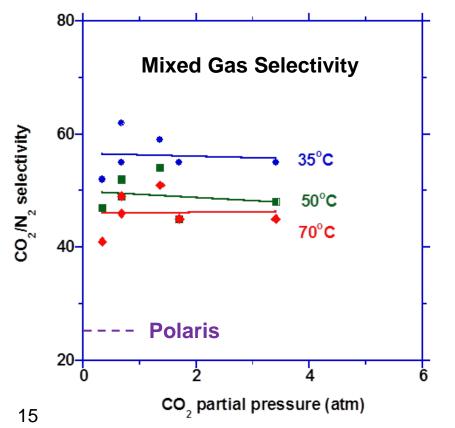
• "Perfect" support for composite membranes, makes it possible to effectively use thinner selective layers, achieving higher membrane permeances


Surface of Conventional Support

Surface of Isoporous Support

Block Copolymer Self-Assembly

• Pores in the support are produced via immersion precipitation in water \rightarrow


\rightarrow cylinders have to be formed by the hydrophilic block

 \rightarrow hydrophilic block has to be the minority block (10 to 25 v%)

New Selective Materials (NYU Buffalo)

• Alternatively, improved supports will make it possible to use less permeable selective materials with higher selectivity, and to compensate for the lower permeability by making very thin selective layers.

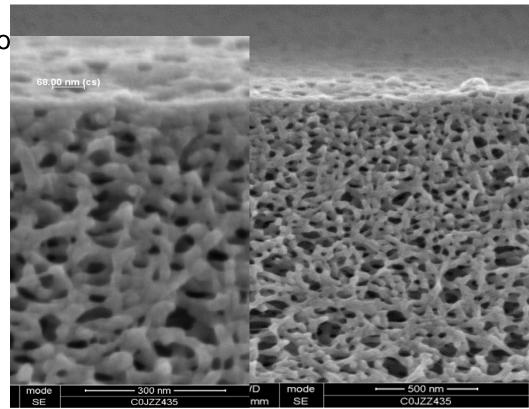
- New polymer chemistries developed at University of Buffalo have high selectivities, even at high CO₂ partial pressures as well as at high temperatures
- Benefits:
 - Higher temperature operation in coal fired power plants
 - Reduced oxygen loss in sweep step
 - Higher pressure operation in gasification, steel and cement applications

Project Gantt Chart

	Start Date	End Date	4/1/2018 - 3/31/2019			2019	4/1/2019 - 3/31/2020			2020	4/1/2020 - 3/31/2021			2021
Project Tasks			Q1	Q 2	Q3	Q4	Q 1	Q2	Q 3	Q 4	Q1	Q 2	Q 3	Q4
														4
Task 1. Project Management and Reporting	4/1/2018	3/31/2021	-	4-										
Task 2. Develop Dual-Layer Isoporous Supports	4/1/2018	3/31/2020												
Task 2.1. Lab-scale Equipment	4/1/2018	3/31/2019	_											
Task 2.2. Commercial-scale Equipment	4/1/2019	3/31/2020						(
Task 3. Develop Selective Materials with Improved Selectivity	4/1/2018	3/31/2021												
Task 3.1. Twenty materials, batch size 1 to 5 gram scale	4/1/2018	3/31/2019												
Task 3.1. Five materials, batch size 10 to 20 gram scale	4/1/2019	3/31/2020						_		-				
Task 3.1. Two materials, batch size 100 to 500 gram scale	4/1/2020	3/31/2021											_	
Task 4. Prepare and Test Composite Membranes with Isoporous	7/1/2018	12/31/2020												
Task 4.1 Lab-scale Equipment	7/1/2018	3/31/2019	-											
Task 4.2 Commercial-scale Equipment	4/1/2019	3/31/2020							-	1				
Task 4.3 Membrane Runs for NCCC Modules	4/1/2020	12/31/2020											- ·	
Task 5. Prepare Modules and Test at MTR	4/1/2018	3/31/2020											_	
Task 5.1 Module Fabrication	4/1/2018	3/31/2019				_								
Task 5.2 Module Testing and Optimization	4/1/2019	3/31/2020												
Task 5.3 Continued Optimization and Modules for NCCC Test	4/1/2020	12/31/2020												
Task 6. Build Module Test Skid	4/1/2020	8/1/2020												
Task 7. Test Modules at NCCC	8/1/2020	1/31/2021										_		
Task 8. Prepare Techno-Economic Analysis	12/1/2020	3/31/2021											-	

Budget Summary

Section A - Budget Summary									
	Grant Program Function or	Catalog of Federal	Estimated Unot	oligated Funds					
	Activity	Domestic Assistance	Federal	Non-Federal	Federal	Non-Federal	Total		
	(a)	(b)	(c)	(d)	(e)	(f)	(g)		
1	Budget Period 1				\$1,036,984	\$272,186	\$1,309,170		
2	. Budget Period 2				\$1,041,453	\$226,851	\$1,268,304		
3	Budget Period 3				\$827,184	\$227,768	\$1,054,952		
4									
5	. Totals				\$2,905,620	\$726,805	\$3,632,425		
Section B - Budget Categories									
6	. Object Class Categories			Grant Program	, Function or Activity	Function or Activity			
ľ	. Object Class Calegories	u olass oaldyones		Budget Period 2	Budget Period 3		Total (5)		
Γ	a. Personnel		\$309,148	\$267,110	\$264,577		\$840,835		
Γ	b. Fringe Benefits		\$0	\$0	\$0		\$0		
Γ	c. Travel		\$7,143	\$7,143	\$21,703		\$35,988		
Γ	d. Equipment		\$128,074	\$213,330	\$70,000		\$411,404		
Γ	e. Supplies		\$94,000	\$94,000	\$34,000		\$222,000		
	f. Contractual	Contractual		\$152,501	\$131,518		\$436,528		
	g. Construction	. Construction		\$0	\$0		\$0		
	h. Other		\$0	\$0	\$4,000		\$4,000		
Γ	i. Total Direct Charges (sum of 6a-6h)		\$690,874	\$734,084	\$525,798		\$1,950,755		
Γ	j. Indirect Charges		\$618,296	\$534,220	\$529,154		\$1,681,670		
	k. Totals (sum of 6i-6j)		\$1,309,170	\$1,268,304	\$1,054,952		\$3,632,425		
				1					
7.	Program Income						\$0		


Project Milestones

Milestone Number	Task/ Subtask No.	Milestone Description	Planned Completion Date (*)	Verification Method			
Budget Period 1							
1	1	Complete Updated Project Management Plan	5/1/18	Revised PMP			
2	1	Complete Technology Maturation Plan	6/30/18	Topical Report			
3	2	Dual Layer Isoporous Supports Produced on Lab Casting Equipment	3/31/2019	Quarterly Report			
Budget Period 2							
4	2 Dual Layer Isoporous Supports Produced on Commercial Casting Equipment		9/30/2019	Quarterly Report			
5	3	Membrane materials selected for scale-up production	12/31/2019	Quarterly Report			
6	6 4,5 Thin film composite membrane and module design chosen for use in field test		3/31/2020	Quarterly Report			
Budget Period 3							
7	7	Test System Commissioned on Flue Gas	7/31/20	Quarterly Report			
8	7	Field Test at NCCC Completed	1/31/21	Quarterly Report			
9	8	Complete Techno-Economic Analysis Report	3/31/21	Topical Report			
10	1	Complete Technology Gap Analysis Report	3/31/21	Topical Report			
11	1	Complete Environmental Health and Safety Risk Assessment Report	3/31/21	Topical Report			
12	1	Submit Final Report	3/31/21	Final Report			
		*					

18

Project Status

- Project started three months ago
- Purchased commercially available block copolymers
- Produced the first examples of block copolymer phase inversion at MTR

- University of Buffalo has started synthesis of the novel selective materials
- First batch has been delivered to MTR

Acknowledgements

- U.S. Department of Energy, National Energy Technology Laboratory
 - José Figueroa
 - Bruce Lani

U.S. Department of Energy National Carbon Capture Center

• University of Buffalo

