*Project: CO*² *injection with fracturing in geomechanically protected caprock*

Task 6 of LLNL's Research Activities to Support DOE's Carbon Storage Program (FWP-FEW0191)

Poroelastic Sustainability of Pressure-Driven Fracture in Carbon Storage Reservoir

Implications for Injectivity and Caprock Integrity

Presented by Pengcheng Fu, Atmospheric, Earth, and Energy Division, LLNL LLNL project manager: Susan Carroll Contributors: Xin (Isaac) Ju, Jixiang Huang, Randolph Settgast, and Joseph Morris.

k was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory ntract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Background: geologic carbon storage (GCS)

70% energy in US is from fossil fuel. Geological Storage Options for CO. Produced oil or gas 1 Depleted oil and gas reservoirs Injected CO, 2 Use of CO, in enhanced oil recovery Stored CO, Demands immense storage volume 3 Deep unused saline water-saturated reservoir rocks 4 Deep unmineable coal seams 5 Use of CO, in enhanced coal bed methane recovery 6 Other suggested options (basalts, oil shales, cavities) Local accessibility is a key Caprock secures integrity 1km caprock reservoir 2km @ CO2CRC

Lawrence Livermore National Laboratory

Why studying caprock fracturing

- Conventional strategy: Injecting below the fracturing pressure to prevent fracturing
- Hydraulic fracturing has been suspected.
 - Evidence showed the storage complex was not comprised.
- Need to re-assess the role of hydraulic fracturing in GCS.
- If CO₂ can be injected through a vertically contained fracture, reservoirs of marginal permeability will be economically viable.

Journal of Geopl	hysical Research: Solid Earth
RESEARCH ARTICLE 10.102/017/B01/0F42 Very Explore 10.102/01/2F42 10.10	The Influence of Hydraulic Fracturing on Carbon Storage Performance
	Pengcheng Fo ¹ (S., Randolph R., Settgast ¹ , Yue Hao ¹ (S., Joseph P. Morris ¹ , and Frederick J. Ryersen ¹ (S ¹ Amospheric Earth. and Energy Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
	Abstract Conventional principles of the design and operation of geologic carbon storage (ICS) require significity CQ, below the capecid instructing pressure to mease the instrupty of the totage complex. In similar storage memory, and the similar pressure to the storage complex. In storage memory, and capeck, While the CCS community has generally viewed hydraulc fractures as a key risk to totage an entry, a verifyed seginger totage constrained and the storage constrained could provide improved injectivity while maintaining operational seging and the storage interlings, and the storage horizing a constrained by private acture, each in the reservoir role or exteriodic a a timet oblight into the caprotect processing an effective actures.
Supporting Information:	mana to access reserval valume fur from the injection well. Employing a My coupled numerical model of Mydaufic faculture), add deformation, and manch Mal Row, well woll whe mahling conflictions, processes, and mechanisms of Mydaufic Russing advarg CQ: piscess. A Mydaufic Russine's persure limiting behavior dictest that the near well fail groups are solved with the that Mydaufic Russing persure of the rock and is intensitive to lejection are and mechanical properties of the formation. Abhough a facture contained solved with the nearcowell fail groupset in the formation. Abhough a facture porostating contained the nearcower disk period. The cogrady permittions, and be an id all covarian, porostating principle dictes that sustaining such a facture could lead to continuously increasing persuare util the cuproid facture. We also mergating the propagation statem and negrotor persure regiones of
Correspondence to: P. Fu, Subplicitger	
Citation: Fig. P., Sengart, R. P., Hao, Y., Morris, J. P., & Ryerson, F. J. (2017). The softwarear of hydroxide fracturing on carbon stronge performance. <i>Journal of Geophysical</i> <i>Besenets Codd Josh</i> , 73(91):0031.0048	hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.
	1. Introduction

The essence of hydraulic fracturing

- The generation of a hydraulic fracture is simply a flow regime change.
- Fracturing occurs if porous medium flow cannot accommodate the injection rate below the fracturing pressure.

Project Overview

- To assess short and long term behavior of hydraulic fractures in geomechanically protected caprock.
 - Goal is to increase injectivity in low-permeability reservoirs and ensure storage security.
 - Develop mechanically rigorous tools to evaluate various fracturing scenarios.
 - In essence, we bring rigorous fracture mechanics and geomechanics to the evaluation of caprock fracturing.

Tasks:

- Develop and validate a CO₂-saline two phase hydraulic fracture model in GEOS. (75%)
- Study the sustainability of hydraulic fracture within the reservoir rock and the implication for injectivity improvement. (85%).
- Study mechanisms and processes contributing to fracture-related phenomena unique to CO₂ injection and containment of and fractures in the caprock.

Is hydraulic fracture in reservoir rock poromechanically sustainable?

- A hydraulic fracture tends to close under constant fluid pressure
 - (Detournay and Cheng, 1991; ...)
- Can we sustain a reservoir hydraulic fracture with a pressure safe for caprock?

Unconventional oil and gas:

- Very low reservoir k
- Can use high viscosity fluid
- Relatively short injection

Carbon storage:

- Much higher reservoir *k*
- Has to inject CO₂
- Long injection

Model reservoir-caprock fracturing requires:

Fracture's poroelastic sustainability: model setup

LLNL-PRES-788277

Fracture's poroelastic sustainability: baseline results

Fracture's poroelastic sustainability: baseline results

Poroelastic effect causes expansion of reservoir (closing fracture).

Fracture opened by fracture loading + Poisson's effect + thermal contraction.

Lawrence Livermore National Laboratory

LLNL-PRES-788277

Technical Conclusions from tasks 1 and 2:

- Sustainability of reservoir fracture and its containment involves complex processes
 - Poroelasticity
 - Poisson's effect
 - Thermal contraction
 - Fracturing through stress barrier
- Highest pressure is required to keep the fracture open near the fracture front
 - Could be several MPa higher than initial opening pressure
 - Wide aperture and likely penetration into caprock near the injection
 - Mostly caused by thermal contraction

Technical status and impact

- Overall 50% completed in this two-year effort.
 - Model development 75% completed and reservoir fracture sustainability 85% completed.
 - Remainder of the project focuses on model validation and investigating robust containment conditions.
- The results could motivate a fundamental shift in exploration/design focuses:
 - Looking for systems with caprock protected by certain inherent geomechanical features.
 - Particularly when only marginal k reservoir is available.
- Addresses several priority research directions
 - PRD S-6 (fault and fracture systems), S-3 (control of near-well environment), S-2 (dynamic pressure limit), S-1 (Multiphysics and multiscale fluid flow)

Layering structure of typical sedimentary rocks

Rock stress

Lesson learned and synergy opportunities

- Fracturing and fracture flow in GCS context is still poorly understood.
- When we incorporate more physics, new understanding emerges.
 - The process should make sense in hindsight, but would be hard to think of without the aid of high-fidelity models.
- Synergistic with
 - Ongoing studies of stress measurement, fault activation
 - Fracturing research in geothermal and oil-gas applications.
- Addresses several priority research directions
 - PRD S-6: Improving Characterization of Fault and Fracture Systems
 - PRD S-3: Optimizing Injection of CO2 by Control of the Near-Well Environment
 - PRD S-2: Understanding Dynamic Pressure Limits for Gigatonne-scale CO2 Injection
 - PRD S-1: Advancing Multiphysics and Multiscale Fluid Flow to Achieve Gigatonne/year Capacity

LLNL-PRES-123456

This work was partly supported LLNL FWP0191, task 6, CO_2 injection with fracturing in geomechanically protected caprock.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Lawrence Livermore National Laboratory

Fracture's poroelastic sustainability: bounding scenario

