Sustainable Conversion of Carbon Dioxide and Shale Gas to Green Acetic Acid via a Thermochemical Cyclic Redox Scheme

> **Fanxing Li (PI) and Luke Neal (Co-PI)** North Carolina State University

> > Brian Turk (Co-PI) Susteon Inc.

Cost share partner: Praxair Inc.

NC STATE UNIVERSITY

Project Overview

Project Funding: DOE - \$797,244; Cost share - \$199,606

Performance Period: 02/01/2019 – 01/31/2022

Project Participants: North Carolina State University, Susteon Inc., Praxair Inc. (cost share partner); **Project Manager:** Andy O'Palko

Project Objective: To develop a process for sustainable and cost-effective production of acetic acid from carbon dioxide, domestic shale gas, and waste heat.

Proposed Strategy: To perform CO_2 -splitting and methane partial oxidation (POx) in a synergistic two-step, thermochemical redox scheme via a hybrid redox process (HRP).

>98% CO₂ conversion and >95% syngas selectivity, <u>but requires >930 °C</u>

Zhang, Haribal, and Li., Science Advances, 2017, 3 (8), e1701184

"Low Temperature" HRP Redox Catalyst

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Project Plan

Research Plan:

Year I. Redox catalyst synthesis, screening and characterization; Preliminary TEA and LCA.

Year II. Stability validation of redox catalysts; Refined TEA and LCA models.

Year III. Redox catalyst demonstration and reactor design; Process scale-up and high fidelity techno-economics.

Key Milestones/Successful Criteria and Timeline:

- *Q3* Title: Milestone 2.2: *Redox material down selection* Select at least 4 redox catalyst with >20% CO₂/PO_x kinetics improvements and/or >40% per cycle CO yield increase vs the CaO-SrFeO₃ reference material.
- *Q4* Title: Milestone 3.2 *Redox performance & stability (decision point)*: Show CO₂ and methane conversions of >85% at temperatures \leq 700 °C after 50 cycles.
- *Q8* Title: Milestone 5.2 Large lab-scale performance verification (decision point): Show methane and CO_2 conversions of >85% at temperatures \leq 700 °C after 500 cycles in a .75" I.D. packed bed.
- *Q10* Title: Milestone 7.1 *Optimized reactor Sizing:* Report modified reactor sizing based upon TEA optimized catalyst.
- *Q12* Title: Milestone 7.2 *Scalable up material validation:* Report CO₂ and methane conversions of >85% at process optimized temperature and cycle timing for redox material over 500 Cycles for a one pot synthesize catalyst.

Thank you

NC STATE UNIVERSITY