Electrochemical Conversion of Carbon Dioxide to Alcohols (FE0029868)

Feng Jiao

Center for Catalytic Science & Technology Department of Chemical and Biomolecular Engineering University of Delaware, Newark, DE (USA)

2019 Carbon Capture, Utilization, Storage, and Oil & Gas Technologies Integrated Review Meeting

August 30, 2019

Project Objectives and Approach

- 1) Development of critical components for an electrochemical system that is able to convert CO_2 into C_2/C_3 alcohols
- 2) Demonstration of key functions of an integrated electrochemical system for CO₂ conversion using flue gas from coal-fired power plants
- 3) Full analysis of economics and life-cycle of the CO₂ electrolysis technology for CO₂ emissions mitigation from coal-fired power plants

Our Approach:

Project Team and Management

Emily Jeng

Wenlei Zhu

3

Project Funding: \$1M (\$800k DOE share; \$200k UD Share) Budget Period 1: 06/01/2017-2/28/2019 Budget Period 2: 3/01/2019-08/31/2020

Kick off Jun. 2017 Go/no-Go #1 Feb. 2019 Final Report Aug. 2020

BP 1: Subsystem components development and evaluation

BP 2: System integration and evaluation, TEA, LCA

BP 1: CO₂ to CO Electrolyzer Stack

DOE BP1 Target: 3 V; 5 A; CO Faradaic efficiency: >70%; 3-hour stability (less than 20% loss)

- A total current of ~7A was achieved at 3V
- Loss of current over 3 hours electrolysis is about 6%.

BP 1: CO to Alcohol Electrolyzer Stack

DOE BP1 Target: 3V; 10 A; 40% alcohol Faradaic efficiency, 3-hour stability (less than 20% loss)

M. Jouny, W. Luc, & F. Jiao, *Nature Catalysis* 1, 748-755 (**2018**).

4 x 12.5 cm² (200 mA/cm²), 2M KOH electrolyte, Cu nanoparticles as cathode (loading at 1.2 mg/cm²), NiFe foam as anode

10 A at ~2.8 V

A total alcohol Faradaic efficiency of 40% was achieved with ~10% loss over 3 hours of operation.

BP 1 achievements

- Met all the milestones and performance targets
- Published major results in leading scientific journals
- Filed an international patent application
- Testified before the US Senate Committee on USE IT Act (Chaired by Senate Barrasso)

Two-dimensional Cu nanocatalyst

- Cu nanosheets with Cu(111) exposed were successfully synthesized
- Jiao, et al. *Nature Catalysis* 2, 423-430 (**2019**).
- Triangle shape (a few micron in dimension) and 4-5 nm in thickness

Electrochemical CO reduction to acetate

Cu(111) nanosheets exhibit a much higher acetate selectivity (up to 48%) than that of micron Cu and Cu nanoparticles (less than 25%).

Techno-economic analysis of CO₂ electrolysis

Critical Assumptions

- Electrolyzer Performance: 300 mA/cm², 90% selectivity, 50% conversion
- Electrolyzer capital cost: \$920/m² electrode area
- Product separation: Distillation for ethanol (10% purity to 90%, \$90/ton), PSA for ethylene (\$25-\$50/ton)
- Financial: 20 yr. lifetime, 15% nominal interest, 25.7% tax
- Process: 100 ton/day production, CO₂ source cost of \$40/ton

M. Jouny, W. Luc, F. Jiao, Industrial & Engineering Chemistry Research 57, 2165-2177 (2018).

Influence of SO₂ on Ag and Sn catalyst

- Reduction in total CO₂ reduction FE due to preferential reduction of SO₂
- Performance recovered after SO₂ injection has been stopped

Influence of SO₂ on Cu catalyst

 $1\% SO_2$ in CO_2

A clear selectivity change towards formate

Slow recovery of C2+ selectivities

SO₂ concentration study on Cu

C2+ selectivity cannot be fully restored after 0.01% SO₂ exposure.

Acknowledgements

Project managers: Andy O'Palko (Current) Ted McMahon Bruce Lani

Thank you