Embedded Sensor Technology Suite for Wellbore Integrity Monitoring

Dr. Paul R. Ohodnicki, Jr., NETL / DOE Lead PI; NETL co-PIs: Dr. Ruishu Wright, Dr. Jagannath Devkota, Dr. Ping Lu, Leidos Research Support Team; Dr. Jesus Delgado, Intelligent Optical Systems (IOS) PI; Prof. Aydin Babakhani, University of California, Los Angeles (UCLA) PI; Prof. Kevin Chen, University of Pittsburgh (U Pitt) PI; Dr. Scott Frailey, Illinois State Geological Survey (ISGS) PI; Prof. David Greve, Carnegie Mellon University (CMU) PI

Project Overview

- A suite of technologies for wellbore integrity monitoring.
- Chemical sensing of high priority parameters (pH, corrosion onset, etc.)

Distributed Optical Fiber Based Chemical Sensors

- **Chemical/pH Sensing Layers (NETL)**
 - Sensing Principle: Evanescent Wave Sensors
 - Distributed Sensing

- **Organic pH Sensitive Coating Fabrication/Deployment (IOS)**
 - Sensor Cladding: pH indicator copolymerized with pHEMA cladding material

Passive, Wireless Surface Acoustic Wave (SAW) Sensors (NETL & CMU)

- SAWs for Liquid Phase Application
 - SAW Attenuation (Δa) and Velocity (Δv): $\Delta a = 4a(e, e, c, T, P)$, $\Delta v = \Delta v_0 + \Delta v_0 (e, e)$

Passive, Wireless Silicon Integrated Circuit Sensors (UCLA)

- Sensing Principle and System Setup
 - CT scans of cement samples with sensors embedded
 - Embedded fibers in high temperature metals, including curved parts.

Embedding of Sensors in Cement and Casing Materials (NETL & U Pitt)

- Embedded Fiber Sensors for Defect Detection using Artificial Intelligence
- Mechanical testing of cement with sensors embedded

Simulation and Experimental Results

- Measure Δv in terms of time delay.

Component Analysis

- Method 2: Principle Component Analysis
- Method 1: Multi-modal Neural Network