"Rapid Design and Testing of Novel Gas-Liquid Contacting Devices for Post-Combustion CO₂ Capture via 3D Printing" Modular Adaptive Packing (MAP)

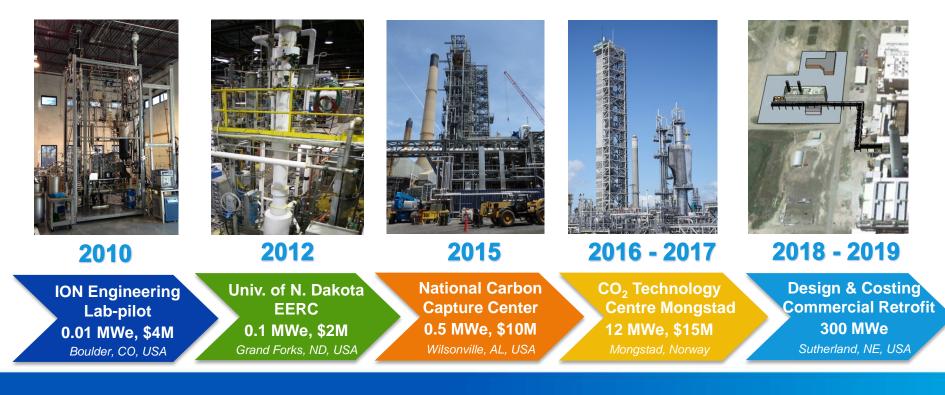
DE-FE0031530 – NETL Project Review Meeting Pittsburgh

Principal Investigator: Project Manager: Technical Lead: Erik Meuleman, Ph.D. Jenn Atcheson Chuck Panaccione

August 13-16, 2018

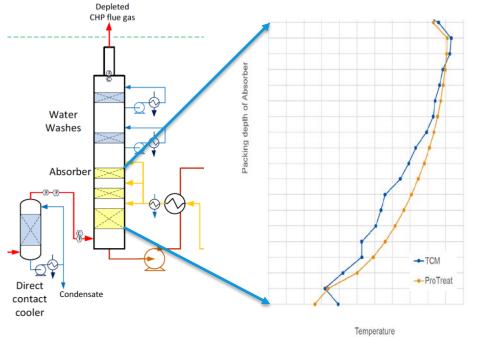
Agenda

- Background
- Project Overview
- Technical Approach



BACKGROUND

Results from SBIR Phase I & SBIR Phase II - DE-SC0012056


ION's CO₂ Capture Technology Development ION is developing its technology by leveraging existing research facilities

Background High Temperature Bulge for Fast, Low Heat Capacity Solvents

ION Campaign at TCM (2016-17)

- Testing operating window was limited by absorber materials (T_{max})
- Additionally, temperature bulge • affects emissions and degradation reactions
- Hence, can we incorporate in-situ cooling throughout the absorber column?

Source: Thimsen et al., GHGT-12, 2014

Background

*"Rapid Design and Testing of Novel Gas-Liquid Contacting Devices for Post-Combustion CO*₂ *Capture via 3D Printing"*

ION has initiated the development of an innovative internal absorber design including distributor, mass transfer, heat exchange and collectors through additive fabrication techniques

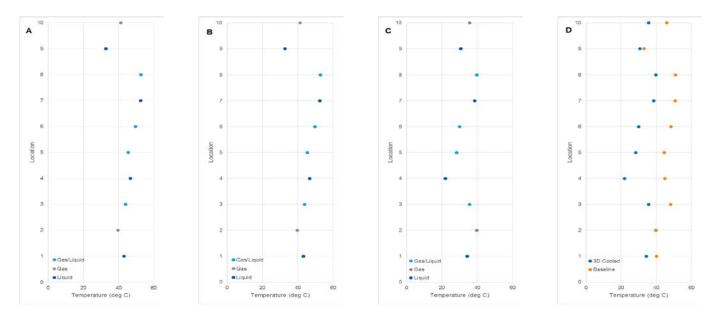
The application of 3-D printing is to significantly reduce the cost of such columns

- Accelerates the design cycles of gas-liquid contacting devices
 - Design process is entirely software-based
 - Devices are parametrically engineered
 - Rapid and flexible feedback loop between design, fabrication and testing that can only be provided through 3-D
 printing will more quickly advance the performance and lower the costs of novel gas-liquid contacting devices
 for CO₂ capture.
- Minimizes manufacturing costs

- A dual function mass and heat transfer packing media was developed
- Optimization based on multi-physics including:
 - mass transfer
 - heat transfer (focus point in Phases I and II)
 - pressure drop
- Printed the devices in plastic and characterized packing

- Created framework to test our current and future models & design
 - Extensible
 - Scalable
- Added CFD and heat transfer properties to the multi-physics model
- Manufactured both engineering plastic and metal prototypes
 - Engineering plastic prototypes were created to test for overall fit, to check for design flaws and to check potential for commercialization
 - Metal prototypes were printed, installed in ION's CO₂ capture lab pilot and conducted a
 preliminary evaluation in contact with solvent and simulated flue gas

Background SBIR Phase II Results – Proof-of-Principle


- Benchmarking our device with commercially available packing
 - Sulzer Mellapak[™] 350X was used (3" diameter)
 - evaluated under the same process conditions
 - benchmarking cases run without internal or external cooling
- Performance of the MAP was evaluated in several ways
 - lean and rich solvent CO₂ loadings were measured by Total Inorganic Carbon (TIC) for mass transfer
 - absorber column temperature profile was measured
 - pressure drop across the packing was measured both for individual beds and as a column
 - with the ION MAP, active cooling packed beds were tested as well as w/o active cooling

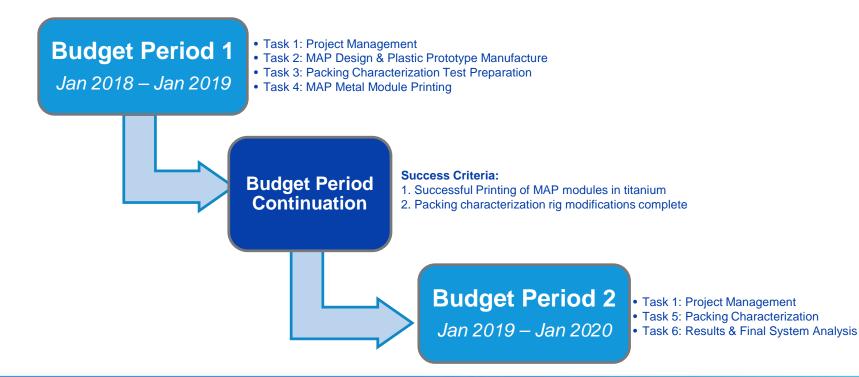
Background SBIR Phase II Results – Proof-of-Principle

Plots of absorber temperature profiles for (A) baseline packing, (B) printed packing uncooled, (C) printed packing cooled, (D) comparison of baseline and cooled packing. The lean solvent feed is at location 9 and the flue gas inlet is at location 2; these are controlled temperatures.

PROJECT OVERVIEW

Project Overview DE-FE0031530

- SBIR Phase III
 - Prior project: DE-SC0012056
- Project Period of Performance: Jan 2018 Jan 2020
- \$2.6M DOE-NETL project funding

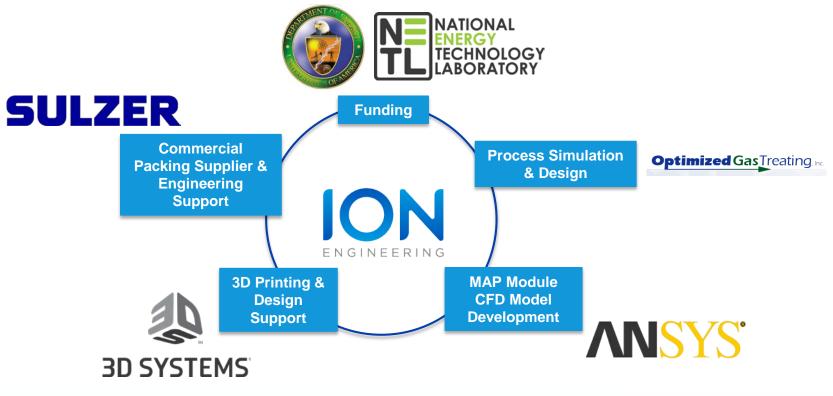

• Overall Project Objective:

Develop a 3D-printed Modular Adaptive Packing (MAP) with internal heating or cooling capabilities. Once a finalized design is complete, packing performance will be characterized in a modified Packing Characterization Rig.

Technical Approach

Overall Project

Technical Approach



Overall Project – Success Criteria

- Success Criteria for Budget Periods
 - Budget Period 1
 - 1. Successful printing of MAP modules in titanium
 - 2. Packing characterization rig modifications complete
 - Budget Period 2
 - 1. Completion of packing characterization as outlined in test plan
 - 2. Concept evaluation report completed

Project Participants & Roles

Project Schedule

			Budget Period 1														Budget Period 2										
	MAP Phase III Project Schedule	1	2		3	4	5	5	6	7	8	9		10	11	12	1	3	14	15	16	17	' 1	18	19	20	21
		Jan-18	Feb-1	18 Ma	ar-18	Apr-18	May	-18 J	un-18	Jul-18	Aug-18	Sep-1	8 0	ct-18	Nov-18	Dec-18	B Jan	-19 Fe	eb-19	Mar-19	Apr-19	May-1	19 Ju	ın-19	Jul-19	Aug-19	9 Sep-19
Task 1	Project Management	D1		M1			M2					N	/13		D2	M	4	D	3 M5	D4		Ν	16				D5
Task 2	MAP Design																									L	
	2.1 Design basis																										
	2.1 Parametric design delivered to ANSYS																										
	2.1 ANSYS module developed to model physics, fluid dynamics, etc.																										
	2.2 ION optimizes ANSYS model with different parameters																										
	2.2 Prototype prints/evaluation																										
	2.3 Fittings designed																									\square	
	2.4 Detailed analysis of prototype prints																										
	2.4 Final design chosen																										
Task 3	Host Site / Packing Characterization Test Preparations																										
	3.1 Modfications identified for test rig																										
	3.2 Procurement / construction of modifications																										
	3.3 Test plan development																										
	3.4 Baseline packing characterization utilizing commercial packing																										
Task 4	MAP Metal Printing																										
	4.1 Metal module printing commences																										
	4.2 First metal module inspected for quality control prior to remaining modules being printed																									\square	
	4.3 Second metal module printed - quality control testing																									\square	
	4.4 Remaining modules printed																										
	4.4 Delivered to test facility																										
Task 5	Packing Characterization Testing																										
	5.1 Installation & Commissioning of MAP Modules																										
	5.2 Characterization of MAP Modules																										
	5.3 Decommissioning of MAP Modules																									LL	
Task 6	Evaluation & Reporting																										
	6.1 Process modeling & simulations						\square				\square																
	6.2 Data analysis & concept evaluation																										
	6.3 Final reporting																										

Project Overview

Deliverables & Milestones

Deliverables

Corresponding Task/Subtask	Title/Description
1.0	Project Management Plan – BP1
2.4	Test internals final design (report)
3.3	Initial test plan
1.0	Project Management Plan – BP2
6.2	Concept evaluation (report)
	Task/Subtask 1.0 2.4 3.3 1.0

Milestones

#	Task	Milestone Title / Description	Original Completion Date
MO	1.6	Project Management Plan	04/30/18 V1.1 (On-Going)
M 1	2.1	Basis of Design Finalized	04/19/18
M2	2.8	MAP module design finalized	9/30/18
М3	4.4	MAP prints completed	12/15/18
M4	5.1	MAP modules installed & commissioned	2/15/19
M5	5.2	Packing characterization completed	5/31/19

DE-FE0031530 – SBIR PHASE III

Project Overview & Objectives

Phase III: Objectives DE-FE0031530

- Improve upon SBIR Phase II MAP design modelling tool
 - Incorporate pressure drop, heat and mass transfer, and fluid dynamics
 - Parametric model
 - Scale-up to larger diameter column from SBIR Phase II

Phase III: Objectives DE-FE0031530

- Print MAP design modules & characterize
 - 3D print prototypes
 - Engineering Plastic for mechanical fitting and to check for errors
 - Titanium for packing characterization
 - Baseline characterization rig with commercially available packing
 - Modify packing characterization rig to accept MAP prototypes
 - Characterize ION MAP
- Evaluate economic benefits with ProTreat[®] simulation model

TECHNICAL APPROACH

Technical Approach ANSYS, ProTreat[®], Commercial Assessment

- Improve MAP design in collaboration with ANSYS
- Improve reaction and mass transfer equations and code
 - Improve of heat transfer equations and code
 - Scale model to use more computational power to handle increased complexity
- Modify and validate process models
- Analysis of readiness for commercial scale

Technical Approach

Packing Characterization

- Testing includes measurements of:
 - Pressure drop over the height of the packing as a function of gas- and liquid load and viscosity
 - Packed bed liquid hold-up will be mapped over a broad range of column gas and liquid loads
 - Determination of effective surface area of the packings as a function of gas and liquid load will be performed by reactive experiments with CO₂ and sodium hydroxide solutions in the column
 - These tests are performed with water, sodium hydroxide and air/CO₂

Acknowledgement and Disclaimer

Acknowledgement

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under cooperative award number DE-FE0031530.

Disclaimer

"This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

ION Team:

Chuck Panaccione, Greg Staab, Tyler Silverman, Erik Meuleman, Buz Brown, Andrew Awtry, Jenn Atcheson, René Kupfer, Kelly Sias

Department of Energy:

Steve Mascaro, Lynn Brickett, José Figueroa, Bethan Young, Jeff Kooser

