Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

> Prime Recipient John A. Dunbar Baylor University Department of Geology Waco, Texas

DOE Award Number DE-FC26-06NT42959

NETL Project Manager Frances Toro

September 18, 2007

Bottom-Towed Direct Resistivity Profiling for Hydrate Exploration

Project Status

Phase 1: Evaluate DCR Method for Reconnaissance Surveys

Task 1: Build Ocean-Bottom Resistivity System

- Budget: \$88 k of \$138 k Federal funds spent/committed
- Schedule: One quarter behind
- Complete and test system Fall 2007

Task 2: DCR Survey of MC 118

- Conduct survey during winter 2008
- Process and interpret data during spring 2008

Project Organization

Baylor University, Waco, Texas (John Dunbar) Shear wave seismology, marine seismic acquisition, subbottom profiling and electrical methods.

Geophysical data acquisition, processing, and interpretation.

Advanced Geosciences, Inc., Austin, Texas (Mats Lagmanson) Commercial DCR systems for engineering, mining, and environmental applications.

Electronic components for DCR system.

Specialty Devices, Inc., Wylie, Texas (Paul Higley) Electrical/ocean engineering, marine acoustics, deep-sea ROVs.

Assembly of ocean-bottom DCR system, field deployment.

John Dunbar Professional Background

- BS & MS Virginia Tech, 1973-79: Gravity and Heat Flow
- Arco Research, Plano, 1979-84: Shear Wave & Marine Seismology
- PhD UT Austin, 1984-88: Basin Subsidence, Lithospheric Dynamics, Marine Geophysics
- Shell Research, Bellaire, 1988-94: Basin & Structural Modeling
- Baylor University, Waco, 1994 : Sub- bottom Acoustic and Resistivity Profiling

Shallow Marine DCR System

Example Inverted DCR Sections from Lake Whitney, Texas

Alternate Paths to the "Holy Grail" of Marine Gas Hydrate Exploration

Goal

 Geophysical method for reliably mapping the concentration of hydrates within the stability zone

Seismic methods

- Full waveform seismic inversion
- AVO
- Deep-towed and ocean-bottom reflection systems
- Refraction tomography
- Electrical methods
 - Controlled source EM
 - Direct current resistivity?

Johnson and Max, The Leading Edge, May 2006

Mechanical Versus Electrical Response to Hydrate Saturation

Low Hydrate Saturation

High Hydrate Saturation

What Electrical Methods Bring to the Table

Controlled Source EM Verses Direct Current Resistivity

Characteristic	CSEM	DCR
Coupling Through Air	\checkmark	
Coupling Through Casing		
Coupling in Marine Environment		
Offsets to 10s of km		
Offsets to a few km		
Interchangeable Sources/Receivers		
Expandable to 100s to 1000s of sens	ors	

Near Surface EM and DCR Instruments

Geonics EM31

AGI Super Sting

Controlled Source EM Vs DC Resistivity

CSEM Source & Receiver

DCR Source & Receiver

www.WesternGeco.com

Requirements for Commercial Hydrate Exploration System

- Map hydrate concentration
- Penetration to 1 km
- Continuous acquisition at 4 to 5 knots
- 3D coverage for exploration
- 4D coverage for production
- True 3D tomographic imaging

Phase 1: Ocean-Bottom DCR Reconnaissance Survey

DCR System Components

Receiver Card

Instrument Pressure Housing Design Bellamare, Inc., La Jolla, California

Deep-Tow Seismic Grid, Vent Area MC 118

Massive Gas Hydrate Outcrop at MC 118

Conceptual Model of MC 118 Methane – Hydrate System

Deep-Tow, ~**Pole-Dipole**, **CRP Geometry**

AGI's Remote Control Interface Via RS232 Emulation

Synthetic Model Test: 200 m Thick, Low Saturation Layer

Synthetic Model Test: Low Saturation Layer Plus High Saturation Sill

Synthetic Model Test: Low Saturation Layer Plus High Saturation Plug

Proposed and Preferred DRC Survey Footprints

Instrument Deployment and Line Change

Instrument Retrieval and Line Change

Phase 2: Long-term Fixed Monitoring

Commercial-Scale Exploration DCR System

Commercial-Scale 4D, DCR Monitoring System

Specifications

- Static 3D array
- 100s of channels
- 1000s of electrodes
- Image on daily basis