

www.ieaghg.org

Panel on International CCS Value Chain Developments

29th August 2019

NETL CCUS Review Meeting Pittsburgh, USA

www.ieaghg.org

Technology Collaboration Programme

International CCS Value Chain Developments Global Context

Tim Dixon, General Manager, IEAGHG

29th August 2019

NETL CCUS Review Meeting

Pittsburgh, USA

Technology Collaboration Programme

Who are we?

Our internationally recognised name is the IEA Greenhouse Gas R&D Programme (IEAGHG). We are a Technology Collaboration Programme (TCP) and are a part of the International Energy Agency's (IEA's) Energy Technology Network.

<u>Disclaimer</u>

The IEA Greenhouse Gas R&D Programme (IEAGHG) is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publications of the IEA Greenhouse Gas R&D Programme do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

IEAGHG Members

CCS Value Chains

- What is a "Value Chain" for CCS?
 - Broad range of possibilities due to wide range of applications of CCS
 - o Power sector
 - o Decarbonising industrial sectors
 - o Hydrogen and CCS
 - o CO2-EOR and other utilization options
 - A range of business models
 - Also Social-economic value
 - IEAGHG looking into better defining and quantifying "value"

Valuing flexibility in CCS power plants (FlexEVAL)

- Aim: To investigate the need for flexibility and the value of flexible CCS power plants in the UK energy system
- Contractor: Imperial College London
- IEAGHG Report 2017-09

и Касна Касна

The value of a power technology can be quantified as reduction in total system cost resulting from its deployment.

The System Value (SV)

- accounts for system dynamics (e.g. "cost of intermittency", "associated carbon")
- is not a constant value (like the LCOE, CAPEX, OPEX, etc.)
- is a function of prevalent technologies in the system, demand, emissions target, etc.

System Value

Findings

Flexible CCS power plants:

- provide additional value to the electricity system of the future
- complement intermittent renewable capacity
- facilitate increased intermittent renewable generation
- provide system-wide benefits critical to reducing the cost of the electricity system

Integrating CCS technologies with intermittent renewable capacity:

- is instrumental to reducing the total system cost
- enables both a low-carbon and a low-cost future electricity system.

Canada's Carbon Pricing Backstop

A carbon tax backstop is enforced by the federal government if provinces do not adopt a price on carbon. The carbon tax is revenue neutral. Funds collected go back to the province to decide how to disburse them.

Canada's carbon prices begins at a minimum of \$10 per tonne in 2019, and increases \$10 each year until it hits \$50 per tonne in 2022.

ccsknowledge.com

allowed limit.

Yellow band:

allowed limit.

Canada's Carbon Pricing for Coal & Natural Gas

Industrial carbon capture business models

Key results

elementenergy

Emrah.Durusut@element-energy.co.uk antonia.mattos@element-energy.co.uk

elementenergy

Element Energy identified and assessed business models to incentivise industrial carbon capture

6 promising models address the key requirements from a public and private sector perspective

- Revenue models for industrial carbon capture (ICC) may be based around incentivising CO₂ abatement or low carbon products.
- The key to a successful mechanisms is balancing the private and public sector requirements. For the private sector, a strong and certain revenue model is a key factor; for the public sector it is important to drive cost reductions and implement a simple and transparent policy.
- Globally competitive industry must be protected from the full cost of ICC to maintain competitive position and prevent 'carbon leakage'.
- Models must consider the revenue mechanism, the funding source, capital and ownership options and risk management measures. Each of the revenue models requires support from a suite of risk management instruments to ensure risks are addressed where possible and allocated to those most able to bear them.
- The scale-up phase of CCS development will require significant support financially and in terms of risk management, but in the roll-out phase the private sector may take on these risks. A model may evolve to account for this.

Contract for	Cost plus: All	Regulated asset	Tradeable tax	CCS certificates:	Low carbon
difference: CfD on	properly incurred	base: Public	credits: CCS tax	Certificates	market: End-use
CO ₂ price relative	ICC operational	regulation allows	credits awarded	representing tCO ₂	regulation e.g. on
to market CO ₂ price	costs are	costs to be	\$/tCO ₂ to reduce	abated through	buildings to create
(e.g. EU ETS) to	reimbursed	recovered through	firms tax liability	CCS, which can be	a low carbon
provide guarantee	through taxpayer	product prices e.g.	(e.g. 45Q) or trade	traded and emitters	market & achieve
of revenue	funding	of Hydrogen	with other firms.	have an obligation.	product premium

Value created by incentives:

- 45Q
- California Low Carbon Fuel Standard

CO2-EOR

Norway – Preparing to receive other countries CO₂

- Norway Full Scale Integrated Project
- London Protocol Export amendment
 - Provision Application being proposed by Norway and NL to allow countries to apply the 2009 CO2 export amendment – to avoid waiting for ratification
 - the last international legal barrier to CCS being addressed!
 - 7-11 Oct 2019

IEAGHG work

- Enabling CCS Clusters IEAGHG Report 2018-01
- Valuing Flexibility in CCS Power Plants IEAGHG Report 2017-09
- Beyond LCOE: Value of CCS in Grid Scenarios study underway
- Looking into how to better define and quantify "value"
- Workshop on CCS Value by TOTAL and OGCI on 14-15 October 2019, Paris

Registration still open!

10 keynote presentations 74 technical presentations 115 attendees (to date) 19 countries represented complimentary site visits

Conference themes:

- Process configurations
- Separation technologies
- Applications
- Modelling
- Cost and environmental assessments
- Demonstration activities

KYOTO, JAPAN, 17-19 SEPTEMBER 2019

https://ieaghg.org/conferences/pccc/2-uncategorised/913-5th-post-combustion-capture-conference

Hosted by Khalifa University; Conference location - ADNEC,

Abu Dhabi, UAE

Call for abstracts opens early September 2019

- Deadline to submit an abstract 7th January 2020
- Early Bird registration opens March 2020
- Draft Technical programme announced online May 2020
- Visit <u>https://ghgt.info/</u> for all conference information and abstract submission

Panel on CCS Value Chain Developments

Global Context - Tim Dixon, IEAGHG

Norway's Full Scale Integrated Project – Capture Aspects - Bjorn-Erik Haugan, Gassnova

Norway's Full Scale Integrated Project – Transport and Storage Aspects – Dr Philip Ringrose, Equinor

Hydrogen Energy Supply from Australia to Japan – Mr Katsuya Ishikawa, Kawasaki Heavy Industries

Valuing CCS Flexibility on the Grid – Dr Geoff Bongers, Gamma Energy Technology

Value of CCS-Socio-Economic Impacts - Piera Patrizio, IIASA