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Outline

• Background
• Project Objectives
• Combustor Design
• Test Loop Design
• Future Work
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Why sCO2 Power Cycles?

• Offer +3 to +5 percentage 
points over supercritical 
steam for indirect fossil 
applications 

• High fluid densities lead 
to compact 
turbomachinery 

• Efficient cycles require 
significant recuperation
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Third Generation 300 MWe S-CO2 Layout from Gibba, Hejzlar, and Driscoll, MIT-GFR-037, 2006
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What is Direct Fired Oxy-Fuel 
Combustion?

• Oxygen + fuel + CO2
• Designer can choose 

the O2/CO2 ratio, 
unlike typical gas 
turbine combustors

• ASU to produce 
oxygen
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Why Direct Fired Oxy-Fuel Combustion?
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• Capture 99% of carbon dioxide
• Higher turbine inlet 

temperatures possible
• Limiting component is the 

recuperator, not the heater

CO2



Project Objectives

Design a 1 MW thermal oxy-fuel combustor 
capable of generating 1200°C outlet 
temperature

• Manufacture combustor, assemble test loop, 
and commission oxy-fuel combustor 

• Evaluate and characterize combustor 
performance 
– Optical access for advanced diagnostics
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Combustor Design

• Mechanical casing
• Fluid flow path
• Fuel injector
• Oxygen injection
• Combustor liner thermal management
• Optical access
• Instrumentation
• Design for additive manufacturing
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Conceptual Combustor Design
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Computational Modeling

Goals
• Rapid solution times
• Iterate on geometry
• Inform liner thermal 

model
• Reduce risks in a variety 

of areas prior to 
combustor 
manufacturing

Modeling
• RANS simulations by 

SwRI
• Relatively course mesh
• Variety of reduced 

chemical mechanisms
• LES simulations 

performed by others
• Well over 100 cases run
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Knowledge Base
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CO2 concentration

Pressure
Current Application

P up to 200 bar
xCO2 up to 0.96 (mostly as diluent)

Well-Developed Mechanisms
P up to 20 bar

xCO2 < 0.10 (mostly as product)
Sparse data at low pressure, high CO2

Sparse data at high pressure, low CO2

Knowledge front

Limited data available – Current UCF and Georgia Tech projects
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Injector Geometry
• 16 straight swirler passages, 40°

radial swirl w/ 10°down angle
• 8 fuel injectors inject fuel midway 

through swirler passage
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Combustor Geometry
• Effusion cooling on combustor 

head and liner between head 
and dilution holes

• 0.05” wide dilution cooling 
slots, 1” apart
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Effusion Type Boundary Condition

• Effusion boundary 
condition created by 
mass source in first 
near wall element

• Energy source also 
used to make fluid 
injection temperature
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Design and Off-design CFD Boundary 
Conditions

• Design point simulations
• Off-Design: Unique problem of sCO2 oxy-

fuel combustion is the cold startup case
– Roughly order magnitude change in density
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Design 
Point Cold Start

Fast Start 
Ramp

CO2 Mass Flow (kg/s) 1.53 1.02 1.02
Pressure (bar) 200.00 133.33 133.33
CO2 Inlet Temp (°C) 700 50 150
CO2 Density (kg/m^3) 104.2 649.4 203.5
O2 Mass Flow (kg/s) 0.0806 0.0806 0.1360
CH4 Mass Flow (kg/s) 0.0200 0.0200 0.0338
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Temperature Predictions
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CO Concentrations
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Selected Results with Dilution
• Fairly strong recirculation zone
• High temperature near walls 

– Adiabatic wall boundary conditions
– Additional cooling
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Cold Start Case
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Possible Flame Holding Concerns
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• Fuel injected 
within swirler
passage

• Startup case where 
velocity is much 
lower than design 
point
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Collaboration on Combustor Modeling 
with Others

• Work with several small 
companies interested in 
modeling direct fired sCO2 
combustion

• Universities interested in 
geometry
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Cascade Technologies
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Shunn, sCO2 Oxy-combustion Working Group, Aug 2018



Convergent Science
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Sunshot Test Loop
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• The project will use the 
“Sunshot” loop 
currently being 
commissioned at SwRI

• Sunshot turbine will be 
replaced with letdown 
valve



Combustion Loop P&ID
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Closed Test Loop Built to Minimize 
New Piping

• Combustor to be closely 
coupled with existing “Sunshot
heater” 

• Connecting pipes made from 
Inconel 740H

• Addition of water separation in 
the heat rejection portion of 
the loop

• Quotes obtained for all major 
and minor hardware and 
fixtures needed for testing
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Next Steps

• Place major component orders
• Assemble test loop
• Assemble combustor
• Instrumentation and DAQ
• Commissioning – End 2019, Early 2020
• Test Campaign – 2020
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QUESTIONS?
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