Direct Fired Oxy-Fuel Combustor for sCO2 Power Cycles

Jacob Delimont, Ph.D. Nathan Andrews, Craig Nolen, Carolyn Day Southwest Research Institute

> Marc Portnoff Lalit Chordia, Ph.D. Thar Energy L.L.C.

Wenting Sun, Ph.D., Tim Lieuwen, Ph.D. Ben Emmerson, Ph.D. Georgia Tech

> Subith Vasu, Ph.D. University of Central Florida

Paul Hsu, Ph.D., Sukesh Roy, Ph.D. Spectral Energies

> Keith McManus, Ph.D. GE Global Research

Work supported by US DOE under DE-FE002401

10/31/2018

2018 University Turbine Systems Research Workshop

HEAT

SOURCE

P3

P7b

P/h

P7a

RE-COMPRESSOR

Ρ4

HIGH TEMP

RECUPERATOR

EXPANDER

LOW TEMP

RECUPERATOR

PRECOOLER

P4a

COOLING IN

COMPRESSOR

P5

COOLING OUT

Outline

- Background
- Project Objectives
- Combustor Design
- Test Loop Design
- Future Work

Why sCO2 Power Cycles?

- Offer +3 to +5 percentage points over supercritical steam for indirect fossil applications
- High fluid densities lead to compact turbomachinery
- Efficient cycles require significant recuperation

Third Generation 300 MWe S-CO2 Layout from Gibba, Hejzlar, and Driscoll, MIT-GFR-037, 2006

10/31/2018

2018 University Turbine Systems Research Workshop

What is Direct Fired Oxy-Fuel Combustion?

- Oxygen + fuel + CO2
- Designer can choose the O2/CO2 ratio, unlike typical gas turbine combustors
- ASU to produce oxygen

Why Direct Fired Oxy-Fuel Combustion?

- Capture 99% of carbon dioxide
- Higher turbine inlet
 temperatures possible

10/31/2018

Limiting component is the recuperator, not the heater

Project Objectives

- ✓ Design a 1 MW thermal oxy-fuel combustor capable of generating 1200°C outlet temperature
- Manufacture combustor, assemble test loop, and commission oxy-fuel combustor
- Evaluate and characterize combustor performance
 - Optical access for advanced diagnostics

10/31/2018

Schedule

Outline

- Background
- Project Objectives
- Combustor Design
- Test Loop Design
- Future Work

Combustor Design

- Mechanical casing
- Fluid flow path
- Fuel injector
- Oxygen injection
- Combustor liner thermal management
- Optical access
- Instrumentation
- Design for additive manufacturing

Conceptual Combustor Design

Computational Modeling

Goals

- Rapid solution times
- Iterate on geometry
- Inform liner thermal model
- Reduce risks in a variety of areas prior to combustor manufacturing

Modeling

- RANS simulations by SwRI
- Relatively course mesh
- Variety of reduced chemical mechanisms
- LES simulations performed by others
- Well over 100 cases run

Limited data available – Current UCF and Georgia Tech projects

10/31/2018

Injector Geometry

- 16 straight swirler passages, 40° radial swirl w/ 10°down angle
- 8 fuel injectors inject fuel midway through swirler passage

.2637

10/31/2018

Combustor Geometry

- Effusion cooling on combustor head and liner between head and dilution holes
- 0.05" wide dilution cooling slots, 1" apart

10/31/2018

2018 University Turbine Systems Research Workshop

Effusion Type Boundary Condition

- Effusion boundary condition created by mass source in first near wall element
- Energy source also used to make fluid injection temperature

10/31/2018

Design and Off-design CFD Boundary Conditions

- Design point simulations
- Off-Design: Unique problem of sCO2 oxyfuel combustion is the cold startup case
 - Roughly order magnitude change in density

	Design		Fast Start
	Point	Cold Start	Ramp
CO ₂ Mass Flow (kg/s)	1.53	1.02	1.02
Pressure (bar)	200.00	133.33	133.33
CO ₂ Inlet Temp (°C)	700	50	150
CO ₂ Density (kg/m^3)	104.2	649.4	203.5
O ₂ Mass Flow (kg/s)	0.0806	0.0806	0.1360
CH ₄ Mass Flow (kg/s)	0.0200	0.0200	0.0338

10/31/2018

2018 University Turbine Systems Research Workshop

Temperature Predictions

10/31/2018

CO Concentrations

Selected Results with Dilution

- Fairly strong recirculation zone
- High temperature near walls
 - Adiabatic wall boundary conditions
 - Additional cooling

Cold Start Case

Possible Flame Holding Concerns

- Fuel injected within swirler passage
- Startup case where velocity is much lower than design point

10/31/2018

Collaboration on Combustor Modeling with Others

- Work with several small companies interested in modeling direct fired sCO2 combustion
- Universities interested in geometry

10/31/2018

Cascade Technologies

Shunn, sCO2 Oxy-combustion Working Group, Aug 2018

10/31/2018

Convergent Science

10/31/2018

Outline

- Background
- Project Objectives
- Combustor Design
- Test Loop Design
- Future Work

Sunshot Test Loop

- The project will use the "Sunshot" loop currently being commissioned at SwRI
- Sunshot turbine will be replaced with letdown valve

10/31/2018

Combustion Loop P&ID

10/31/2018

Closed Test Loop Built to Minimize New Piping

- Combustor to be closely coupled with existing "Sunshot heater"
- Connecting pipes made from Inconel 740H
- Addition of water separation in the heat rejection portion of the loop
- Quotes obtained for all major and minor hardware and fixtures needed for testing

10/31/2018

Outline

- Background
- Project Objectives
- Combustor Design
- Test Loop Design
- Future Work

Next Steps

- Place major component orders
- Assemble test loop
- Assemble combustor
- Instrumentation and DAQ
- Commissioning End 2019, Early 2020
- Test Campaign 2020

10/31/2018

QUESTIONS?

10/31/2018

