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Benefit to the Program

* Program goals being addressed

— Development of modeling and monitoring methods,
tools, technologies that improve the certainty about
the position of the CO,, plume over time

* Project benefits statement

— Provide a practical & cost-effective methodology for
CO, plume delineation using routine pressure/
temperature measurements + geophysical monitoring

— Facilitate (near) real-time monitoring of CO, plume
migration in field projects needed to meet current
regulatory requirements



Project Overview:
Goals and Objectives

 Develop and demonstrate a rapid and cost-effective
methodology for spatio-temporal tracking of CO,
plumes during geologic sequestration

— Pressure and temperature tomography: Use pressure &

temperature arrival time data to infer spatial distributions of
CO, plume

— Integration of seismic onset time: Improve the seismic
monitoring workflow through the integration of ‘onset’ times

— Joint Bayesian inversion and field validation: Efficient
Bayesian framework for probabilistic data integration

validated using data from ongoing field projects (Petra Nova
Parrish CCUS project, Texas)
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Methodology

CO, Plume Imaging: Key Elements

Recasting Fluid Flow Equations as Tomographic
Equations

— High frequency asymptotic solution
Utilization of the Seismic Onset Time Concept

Parsimonious Representation of Geologic
Heterogeneity

— lll-posed inverse problem, needs regularization
— Image compression via basis functions

Data Integration and Image Updating
— Multi-objective optimization and Inverse Modeling



Methodology

Asymptotic Approach: Fluid Fronts vs. Wave Fronts *

* Fatemi and Osher, 1995; Vasco and Datta-Gupta, 1999; 2016

* High frequency solution to the flow and transport
equation mimics the one usually found in wave
propagation

 We can exploit the analogy between the
propagating fluid front and a propagating wave

 The trajectories or flow paths associated with the
fluid front are similar to rays in seismology/optics

* Provides an efficient formalism for plume imaging
using reservoir dynamic response



Methodology
Asymptotic Solution: Diffusivity Equation

« Diffusivity equation in heterogeneous medium

glx)ue, ) -

- Transform to Fourier domain
H(X)uc, (i) P (x, ) = K(X)V2P (X, @) + VK(X) - VP (X, ®)

V- (k(X)VP(x,1))

* High frequency asymptotic solution leads to a propagation
equation for pressure ‘front’:
k(x)

W‘VT(X)( -1 Where OK(X)Z ¢(X),UCt

Eikonal Equation

The Eikonal equation can be solved efficiently
using the Fast Marching Method (Sethian, 1996)



Methodology

Solution to Eikonal Equation

Fast Marching Method:

efficient method to solve the

Eikonal equation (Sethian

I
1998,1999) 66
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Methodology

Pressure ‘Front’ Propagation
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Methodology

Pressure ‘Arrival Time’ Tomography
(He, Dattagupta, Vasco, 2006;Brauchler et al., 2007; Hu et al., 2015)
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Methodology

Temperature Tomography

* Analogous Approach to Pressure Tomography

« Assumption — The diffusive time of flight
gradients are aligned with temperature
gradients

— 3D to 1D equation for temperature propagation

* Proof of concept presented (SPE Journal,
Dec. 2016)
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Methodology

Seismic Monitoring via Onset Times

Two-Way Time Shift Maps: Peace River (Hetz et al., 2017)
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Methodology

Onset Time Map: Better Representation of Time
Lapse Seismic Data
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Methodology

Time Shift Maps to Onset Time Map

« The calendar times at which geophysical observations begin to
deviate from their initial or background value (Vasco,2015)
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Methodology

Seismic Monitoring Using Onset Time

o Efficient integration of frequent time-lapse seismic
surveys through substantial data reduction

 More robust: Less sensitivity to petroelastic model
compared to amplitude inversion

e Rapid convergence: quasilinear inverse problem

Applicability to infrequent seismic surveys needs to be investigated
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Methodology

Data Integration and Model Updating: Issues

e Diverse Data Types
— Scale, resolution and precision
— Potentially conflicting

* Poorly constrained
— Sparse data, large parameter space

o Multi-scale, Multi-objective Inverse Problem
— Pareto Optimal Solution
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Accomplishments to Date: Year 1

 CO, Plume Tracking at Petra Nova CCUS Pilot —
Project
— Fuel 255 (2019) 115810

e Saturation Imaging Seismic Onset Time: Impact of
Survey Frequency
— SPE 196001 (ATCE 2019)

« Application of ensemble learning for machine-
learning based data integration

— URTeC 2019-929 (2019)
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Background: Petra Nova CCUS Project

Power Plant

West Ranch N
Oil Field ~_\ Yzl

World’s largest post-combustion CO,
capture, EOR and storage project

NRG/JX Nippon partnership

Captures more than 90% of CO,, from
a 240 MW flue gas stream (~ 5,000
tons of CO2 per day)

Captured CO, is utilized for EOR

60 MMSTB of oil is estimated to be
recoverable from EOR operations



West Ranch Field 98-A CO2 Pilot
~ September 2012

| Pilot Area

® COZ2 Pilot conducted in center of
98-A

® 16 acre inverted five-spot

| ® Single injector, four producers and
Original GOC : 5070 ft. two observation wells
Original OWC : 6140 ft.
D ® 230MMSCF CO2 injected for 20
West Ranch A.600 GO Pro tom Sepember 2012 days followed by water
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Previous Work: Field Model Calibration
(SPE Reservoir Engineering, January 2019)

e
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Reservoir Model

Size: 10km X 5km
Thickness: 140ft

Geologic Grid: 253 x 212 x 140
Active Cells: 3,000,000

Perm Range: 0.5 —40,000mD

* >120 wells drained over a period over 75 years
* No well completion data; limited well production data

(Very heterogeneous)

Hierarchical Model Calibration

Fisid Average Preszure

.

Next Steps
* Initialize pilot model from calibrated field model
* Integrated pilot production data

» Optimize CO, EOR design, as an optimal parametric
design for entire field




Sector Model from Full Field Model

® Fully compositional model

® Pilot model initialized from the full-field model

Pressure (psi)

® Boundary fluxes from full field model were
imposed
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Model Parameterization & Objective

Function
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Model Calibration Results: CO, Mole
Fraction
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% Total Injected CO2

CO, Recovery Comparison
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e 314 and 601

Model Validation: Saturation
Logs Comparison

+ 600 is the 15
Injector s
e 473, 487, 602 e
and 332 are
producers

are monitor
wells




Saturation Logs Comparison: Well 314
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Saturation Logs Comparison: Well 601
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CO, Plume Profile Comparison







Next Steps

Development and testing of temperature tomography
based plume detection for CO2-oil-gas-brine-systems

Development and testing of joint inversion of
temperature and pressure data for plume detection for

CO2-oil-gas-brine-systems

Further refinement of seismic onset time based
Inversion: survey frequency and attribute selection

Field validation of the numerical tomographic
Inversion using data from ongoing CO, injection
projects (e.g., Petra Nova CCYS)
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BACKUP
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Expected Outcomes

e Advanced CO, plume mapping protocols using novel
forward and inverse modeling techniques to:
(a) reduce cost and uncertainty
(b) satisfy regulatory requirements
(c) provide continuous monitoring and long-term durability
(d) cover a large area with improved accuracy

« Key elements are:

(a) novel pressure and temperature tomography using the Fast
Marching Method (FMM)

(b) analysis of time lapse seismic data using a novel ‘seismic onset
time’ approach to detect fluid front propagation

(c) data assimilation and uncertainty assessment
(d) field validation of the methodology o



Methodology

Arrival Time of Pressure ‘Front’

Injection Observation
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Onset Time IS Less Sensitive to the

Velocity as a function of saturations

Petro Elastic Models

Seismic response over the first 85 days of the CSS (Top View)

for different averaging methods
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West Ranch Field : Background
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® Highly heterogeneous (Fluvial Sand)
® Perm Range: 0.1 — 40,000 (mD)

® Severe vertical permeability
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