Deepwater Methane Hydrate Characterization and Scientific Assessment

DE-FE0023919 Peter Flemings & the UT-GOM² Science Team University of Texas at Austin

U.S. Department of Energy

National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 26-30, 2019

UT-GOM2 Team

Presentation Outline

- Introduction
- Insights From UT-GOM2-1 Expedition
- Laboratory Results
- UT-GOM2-2 Expedition

Significant reserves in gas hydrate deposits within coarse-grained systems

(From Fire and Ice, Fall 2006, Boswell & Collett)

The Challenge: Systems understanding of gas hydrate formation and dissociation in coarse-grained rocks

- Need physical samples to understand fluid and sediment properties
- Marine physical samples never acquired in U.S. program prior to UT-GOM2-1

a. Response to Depressurization

(Boswell et al., 2016)

Technical Status

10 year drilling and science program to study coarse-grained methane hydrate deposits

- UT-GOM2-1 Engineering Test (2017)
- UT-GOM2-2 Hydrate Coring Program (2022)

Project Timeline

- Previous Tasks/Events shown in blue with solid line
- Future Tasks/Events shown in orange with dashed line

UT-GOM2-1 Goals

Goal: capture pressure cores across hydrate bearing interval:

- Gas source
- Pore water composition
- Sediment texture
- Concentration
- Permeability
- Rel. permeability
- Geomech. Props.

- 915

- 2745

(B 821

GC 822

GC 823

 \odot

GC 824

GC 825 ENTERNA GC 865 GC 866 GC 867 GC 868 GC 870 Green Canyon Reentrant GC 911 GC 912 GC 913 GC 914 GC 955 GC 953 GC 954 GC955-001 ... GC 956 GC 957 GC 958 GC955-1 GC955-Q GC955-002 Greenknoll GC955-H001 \odot UT-GOM2-1-H002 GC 1001 GC 997 GC 998 GC 999 GC 1000 GC 1002 • WR 29 sealment WR 30 WR 31 WR 32 WR 33 WR 34 Bathymetry: "BOEM Northern Gulf of Mexico WR 73 0 1 2 4 Kilometers 78 Deepwater Bathymetry Grid from 3D Seismic"

(Meazell et al., in review)

Spud-in for H002 Well

Recovering pressure core

Cored Intervals

A	В	С	D	Е	F	G	н
Depth (mbsf)	GC955-H001 Resistivity	H002 Core Intervals	H002 Core Recovery	H002 Pressure Condition	H005 Core Intervals	H005 Core Recovery	H005 Pressure Condition
<u> </u>							
	Unit #						
<u> </u>	<u> </u>	Core 1CS	\geq				
- 415 -		Core 2CS	>				
		Core 3CS	\ge		Core 2FB	>>	
<u> </u>		Core 4CS	>		Core 3FB		
		Core 5CS	\succ		Core 4FB		
- 425 -	Unit A	Core 6CS	\succ		Core 5FB		
<u> </u>		Core 7CS	\succ		Core 6FB		
		Core 8CS	\searrow		Core 7FB		
<u> </u>					Core 8FB		
					Core 9FB		
440 —					Core 10FB		
	Unit #2				Core 11FB	\succ	
445 —	Unit B				Core 12FB	<u> </u>	
	Unit #3				Core 13FB		
450 -							
	Unit #						
<u> </u>						Į	
re		ecovered table	overed Non-pressurized				
conditions (no sealing)							noromised
recovered V Pressure core compromised during core processing during coring							

Lithofacies

Sandy Silt

- Interbedded with clayey silt.
 - 10 cm average but up to 1 m.
- low density and high velocity
- Cross-bedding
- Continuous underformed samples.

<u>Clayey Silt</u>

- Interbedded with sandy silt
 - 3 cm average
- High density and low velocity
- Generally massive and more deformed

Sandy Silt

PCATS – X-ray CT

Depositional Model for GC-955

(Meazell et al., in review)

(Santra et al., in press)

Hydrate Concentration (S_h)

Examples from ~ 20 cm length sections

(Flemings et al., in review)

Hydrate Concentration (S_h)

Core H005-04FB

(Phillips et al., in review)

All Hydrate in Sandy Silt

19

Gas interpreted to be microbial in origin with possible trace thermogenic

(Phillips et al., in review)

Reservoir Bounding Units

Water-Bearing Interval

Analysis of Pressure Cores

Operations on permeameter

Analysis of Pressure Cores

Effective Permeability Estimate: 0.1-0.6 md (1 to 6 e⁻¹⁶ m²)

(Fang et al., AAPG Bulletin, in preparation)

Intrinsic Permeability of Reconstituted Sandy Silt

Undercompaction

Coarse sandy soils or non-plastic material Sandy silt

Intact vs. Reconstituted Sandy Silt

Sandy silt

In comparison with other hydrate reservoirs

- Sandy silt: 11.8 mD (1.18×10⁻¹⁴ m²) at in-situ effective stress (3.8 MPa)
- Clayey silt: 3.84×10⁻⁴ mD (3.84×10⁻¹⁹ m²) at in-situ effective stress (3.8 MPa)

(Fang et al., AAPG Bulletin, accept pending revisions)

Effective (~0.5 md) vs. Intrinsic (~12 md) Permeability

(Fang et al., AAPG Bulletin, in preparation)

• Intrinsic permeabilities of sandy silt and clayey silt lithofacies provide end members of the permeability in GC 955 hydrate reservoirs.

2022: UT-GOM2-2 Scientific Drilling Program: WR 313

Pressure & Conventional Coring & Pressure and temp.

GOM2-2 Research Questions

1. Reservoir Properties (we have sampled 1 marine sand hydrate reservoir)

A.More characteristic of producible reservoirB.Multiple reservoirs at different thermodynamic and stress states

GOM2-2 Research Questions

1. Reservoir Genesis and Exploration Model

- A. Geochemical & sedimentary profiles from seafloor to base hydrate stability zone
 - 1) Gas Source (thermogenic vs. biogenic)?
 - 2) Is gas sourced locally or is transported long distances?
 - 3) What is the microbial activity? What are the methanogenesis kinetics?
- B. Evolutionary model to predict basins most likely to form concentrated reservoirs in coarse-grained systems
 - A. Role of biogenic vs. thermogenic source, burial history, and fluid flow in generating deposits
 - B. Critical to understanding

hydrate system but also all shallow gas systems

Lessons Learned from UT-GOM2-1

- Extensive resources must be allocated to project management
- Permitting process is exhaustive and requires enormous focus and commitment.
- Must have strong institutional support (bonding, permitting, contracting, insurance).
- Pressure coring is still a developing technology:
 - Must bench and field test all equipment prior to going to sea.
 - Cannot make even minor changes after field testing
- Laboratory testing of pressure cores is a time-intensive process continually pressing the boundaries of technology
- Permitting process should begin earlier.

Synergy Opportunities

- We are a global resource that supports research into hydrate system
 - Technical Advisory Group reviews sample requests.
 - Samples to NETL, USGS, JOGMEC (Japan), Georgia Tech
 - Open Shared testing of pressure coring tools with Japan

Project Summary

- Key Findings
 - Interbedded clayey silt and silty sand at cm to m scale.
 - 90% hydrate saturation in silty sand
 - Microbial origin
 - Permeability
 - Effective permeability (Sh=0.9) : ~0.5 md
 - Absolute permeability: ~12 md
Project Summary

- Steps Forward: UT GOM2-2
 - Explore for new hydrate location
 - Drill and Core 2nd depositional environment (sheet sands)
 - Full suite of pressure coring and standard coring to capture downhole behavior.
- Steps Forward: International Experimental Program
 - Systematic analysis of hydrate petrophysics through U.S. and international partners.

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program

- This effort will acquire and analyze the petrophysical properties of hydrate-bearing coarse grained reservoirs.
- It will address the question of how to produce them environmentally, safely and economically.
- Specifically, it will determine what are the basic flow and mechanical properties of these systems so that we can understand this behavior?

Project Overview

Goals and Objectives

- Describe the project goals and objectives in the Statement of Project Objectives.
 - How the project goals and objectives relate to the program goals and objectives.
 - Identify the success criteria for determining if a goal or objective has been met. These generally are discrete metrics to assess the progress of the project and used as decision points throughout the project.

Organization Chart

- Project Team
 - The University of Texas Institute for Geophysics is the prime contractor, responsible for leading development and execution of all scientific, technical, and logistical aspects of the project.
 - There are five sub-recipients on this project:
 - Ohio State University: Site characterization and technical science lead
 - Oregon State University: Microbiology lead
 - University of New Hampshire: Lithostratigraphy lead
 - University of Washington: Organic and inorganic geochemistry lead
 - Lamont-Doherty Earth Observatory: Wireline logging and logging-while-drilling lead

Organization Chart Project Team

Organization Chart Project Advisory Group

 The Project Advisory Group is responsible for guiding technical project decisions. This group includes members of the Project Team, BOEM, USGS, DOE, and industry.

PHASE 1: Oct 2014 – Sep 2015

ID	Task Name			Sen	Qtr 1, 2015	Qtr 2, 2015	Qtr 3, 2 b Mar Apr	015 Qi	tr 4, 2015 Jul Aug Sep	Qtr 1, 2016 Oct Nov			
1	Task 1.0: Project Manag	ement and Planning							Ton Train Day				
2	M1A: Update Project Management Plan					♣ § 3/18							
3	M1B: Project Kick-off	Meeting			•	12/11							
4	Task 2.0: Site Analysis a	nd Selection								•			
5	M1C: Site Location and	d Ranking Report								• 9/30			
6	Task 3.0: Develop Pre-Ex	pedition Operationa	ll Plan		1					•			
7	M1D: Preliminary Field	d Program Operation	al Plan Report							9/30			
8	Task 4.0: Complete IOD	CPP Proposal			1								
9	M1E: Updated CPP Pro	oposal Submitted								• 10/1			
10	Task 5.0: Pressure Corin	g System Mods & Te	sting		1					•			
11	M1F: Demonstration of	of a viable PCS tool (L	ab Test)							9/30			
				I									
		Task		Inactive Task		Manual Summary Ro	llup	External Milestone	\$				
Projec	ct: GOM2 Phase1	Split		Inactive Milestone	0	Manual Summary		Deadline	+				
rioje	CL GOME_FIIdSel	Milestone	•	Inactive Summary		Start-only	E	Progress					
		Summary	——————————————————————————————————————	Manual Task		Finish-only	3	Manual Progress					
		Project Summary	1	Duration-only		External Tasks							

PHASE 2: Oct 2015 – Jan 2018

PHASE 3: Jan 2018 – Sep 2019

ID	Task Name	Qtr	1, 2018 Qtr 2, 2018 Qtr 3, 2	018 Qtr 4, 2018 Qtr 1, 2019	Qtr 2, 2019	Qtr 3, 2019 Qtr 4	4, 20
1	Write Phase 2 Report	Dec J	an Feb Mar Apr May Jun Jul	Aug Sep Oct Nov Dec Jan	Feb Mar Apr May	Jun Jul Aug Sep Or	<u>a</u> t
2	M2E: Update Operational Plan	-	♦ 4/12				
3	M2F: Document results of BP2/Phase 2 Activities	-	♦ 4/15				
4	PHASE 3	-					
5	Task 1.0: Project Management and Planning (Cont'd)						
6	Task 6.0: Technical and Operational Support of CPP Proposal (Cont'd)						
7	Task 9.0: Pressure Core Transport, Stg., and Manipulation (Cont'd)						
8	Task 10: Pressure Core Analysis (Cont'd)						
12	Task 13.0: Maintenance and Refinement of Pressure Core Transport, Storage, and Manipulation						
13	Task 14.0: Performance Assessment, Modifications, and Testing of DOE Pressure Coring System						
14	M3A: Demonstration of a viable PCS tool for hydrate drilling: Lab Test			• 1/1			
15	M3B: Demonstration of a viable PCS tool for hydrate drilling: Land Test				♦ 4/1		
16	Task 15.0: Field Program Preparations						
17	M3C: Complete Refined Field Program Operational Plan Report			♦ 1/1			
18	M3D: Completion of required Field Program Permits			↓ 1/1			
19	Budget Period 3 Go/No-Go Decision Point					-	

	Task		Project Summary	1	Manual Task	1	Start-only	E	Deadline	+
Project: GOM2_Phase3_2018_FI	Split		Inactive Task		Duration-only	1	Finish-only	3	Progress	
Date: Fri 7/27/18	Milestone	•	Inactive Milestone		Manual Summary Rollup	,	External Tasks		Manual Progress	
	Summary	1	Inactive Summary		Manual Summary	· · · · · ·	External Milestone	\$		

PHASE 4: Oct 2019 – Sep 2020

ID	Task Name		Start	Finish	San	Qtr 1, 2020	Qtr 2, 2020	Qtr 3, 2020	Qtr	4, 2020	Qtr 1, 2
0	BUDGET PERIOD 4		Tue 10/1/19	Wed 9/30/20	Jep	OCT NOV DE				ла і Аад і зер	-
1	Task 1 - Project Mana	gement and Planning	Tue 10/1/19	Wed 9/30/20	1 (-
2	M4A - Document Re	esults of BP3 Activities	Tue 12/31/19	Tue 12/31/19			12/31				
3	Task 10 - Core Analys	is	Tue 10/1/19	Wed 9/30/20	1						-
4	Subtask 10.4 - Cont	inued Pressure Core Analysis (UT-GOM2-1)	Tue 10/1/19	Wed 9/30/20							
5	Subtask 10.5 - Cont	inued Hydrate Core-Log-Seismic Synthesis	(UT-GOM2-Tue 10/1/19	Wed 9/30/20							
6	Subtask 10.6 - Addi	tional Core Analysis Capabilities	Tue 10/1/19	Wed 9/30/20							
7	Subtask 10.7 - Hydr	ate Modeling	Tue 10/1/19	Wed 9/30/20							
8	Task 11 - Update Ope	rational Plan for UT-GOM2-2 Scientific Dr	illing Progr Tue 10/1/19	Wed 9/30/20							
9	Task 12 - UT-GOM2-2	Scientific Drilling Program Vessel Access	Tue 10/1/19	Wed 9/30/20							
10	Task 13 - Maintenanc Storage, & Manipulat	e & Refinement of Pressure Core Transpo ion Capability	rt, Tue 10/1/19	Wed 9/30/20							1
11	Subtask 13.1 - Hydr	ate Core Manipulator and Cutter Tool	Tue 10/1/19	Wed 9/30/20							
12	Subtask 13.2 - Hydr	ate Core Effective Stress Chamber	Tue 10/1/19	Wed 9/30/20							
13	Subtask 13.3 - Hydr	ate Core Depressurization Chamber	Tue 10/1/19	Wed 9/30/20							
14	Subtask 13.4 - Deve	lop Hydrate Core Transport Capability for	UT-GOM2-2Tue 10/1/19	Wed 9/30/20							
15	Subtask 13.5 - Expa	nsion of Pressure Core Storage Capability f	for UT-GOM Tue 10/1/19	Wed 9/30/20							
16	Subtask 13.6 - Cont	inued Storage of Hydrate Cores from UT-G	OM2-1 Tue 10/1/19	Wed 9/30/20							
17	Subtask 13.7 - X-ray	Computed Tomography	Tue 10/1/19	Wed 9/30/20							
18	Subtask 13.8 - Pre-0	Consolidation System	Tue 10/1/19	Wed 9/30/20							
19	Task 14 - Performance	e Assessment, Modifications, & Testing of	PCTB Tue 10/1/19	Tue 3/31/20							
20	Subtask 14.1 - PCTE	B Lab Test	Tue 10/1/19	Tue 12/31/19							
21	Subtask 14.2 - PCTE	B Modifications/Upgrades	Tue 10/1/19	Tue 12/31/19							
22	M4B - Demonstrati	on of a Viable Pressure Coring Tool: Lab Te	st Tue 12/31/19	Tue 12/31/19			12/31				
23	Subtask 14.3 - PCTE	B Land Test	Tue 12/31/19	Fri 3/27/20			•				
24	4 M4C - Demonstration of a Viable Pressure Coring Tool: Land Test			Tue 3/31/20				3/31			
25	25 Task 15 - UT-GOM2-2 Scientific Drilling Program Preparations To			Wed 9/30/20							1
26	Subtask 15.3 - Pern	itting for UT-GOM2-2 Scientific Drilling Pro	ogram Tue 10/1/19	Wed 9/30/20							-
		Task F	Project Summary	Manua	al Task		Start-only	E	Deadline	+	
Projec	t: BUDGET PERIOD 4	Split	nactive Task	Durati	on-only		Finish-only	3	Progress		•
Date:	Thu 8/29/19	Milestone 🔶 I	nactive Milestone	Manua	al Summary	Rollup	External Tasks		Manual Progress		-
		Summary	nactive Summary	Manu	al Summary		External Milestone	\$			

Half 2, 2022 Half 1, 2

7/18

7/18

Manual Progress

PHASE 5: Oct 2020 – Sep 2022

ID	Task Name	Start	Finish		Half 1, 2021		Half 2, 2021		Half	1, 2022	
0	Budget Period 5	Thu 10/1/20	Fri 9/30/22	5		JFM	AM				FN
1	Task 1 - Project Management and Planning	Thu 10/1/20	Fri 9/30/22								
2	M5A - Document Results of BP4 Activities	Thu 12/31/20	Thu 12/31/20		•	12/31					
3	Task 10 - Core Analysis	Thu 10/1/20	Fri 9/30/22		·						
4	Subtask 10.4 - Continued Pressure Core Analysis (UT-GOM2-1)	Thu 10/1/20	Fri 9/30/22								
5	Subtask 10.5 - Continued Hydrate Core-Log-Seismic Synthesis (UT-GOM2-1	1 Thu 10/1/20	Fri 9/30/22								
6	Subtask 10.6 - Additional Core Analysis Capabilities	Thu 10/1/20	Fri 9/30/22								
7	Subtask 10.7 - Hydrate Modeling	Thu 10/1/20	Fri 9/30/22								
8	Subtask 10.8 - Routine Core Analysis (UT-GOM2-2)	Sun 5/1/22	Fri 9/30/22								
9	Subtask 10.9 - Pressure Core Analysis (UT-GOM2-2)	Sun 5/1/22	Fri 9/30/22								
10	Subtask 10.10 - Core-log seismic integration (UT-GOM2-2)	Sun 5/1/22	Fri 9/30/22								
11	Task 11 - Update Operational Plan for UT-GOM2-2 Scientific Drilling Progra	Thu 10/1/20	Mon 5/3/21								
12	Task 12 - UT-GOM2-2 Scientific Drilling Program Vessel Access	Thu 10/1/20	Mon 5/3/21		·						
13	M5B - Complete Contracting/Scheduling of UT-GOM2-2 with Driling Vesse	Mon 5/3/21	Mon 5/3/21				♦ 5/3				
14	Task 13 - Maintenance & Refinement of Pressure Core Transport, Storage, & Manipulation Capability	Thu 10/1/20	Fri 9/30/22								
15	Subtask 13.1 - Hydrate Core Manipulator and Cutter Tool	Thu 10/1/20	Fri 9/30/22								
16	Subtask 13.2 - Hydrate Core Effective Stress Chamber	Thu 10/1/20	Fri 9/30/22								
17	Subtask 13.3 - Hydrate Core Depressurization Chamber	Thu 10/1/20	Fri 9/30/22								
18	Subtask 13.4 - Develop Hydrate Core Transport Capability for UT-GOM2-2	Thu 10/1/20	Fri 9/30/22								
19	Subtask 13.5 - Expansion of Pressure Core Storage Capability for UT-GOM.	2Thu 10/1/20	Fri 9/30/22								
20	Subtask 13.6 - Continued Storage of Hydrate Cores from UT-GOM2-1	Thu 10/1/20	Fri 9/30/22								
21	Subtask 13.7 - X-ray Computed Tomography	Thu 10/1/20	Fri 9/30/22								
22	Subtask 13.8 - Pre-Consolidation System	Thu 10/1/20	Fri 9/30/22								
23	Subtask 13.9 - Transportation of Hydrate Core from UT-GOM2-2	Wed 6/1/22	Fri 7/15/22								
24	Subtask 13.10 - Storage of Hydrate Core from UT-GOM2-2	Mon 7/18/22	Fri 9/30/22								
25	Subtask 13.11 - Hydrate Core Distribution	Mon 7/18/22	Fri 9/30/22								
26	M5C - Complete Project Sample and Data Distribution Plan	Mon 7/18/22	Mon 7/18/22								
27	Task - 15 - UT-GOM2-2 Scientific Drilling Program Preparations	Thu 10/1/20	Fri 9/30/22		I						
28	Subtask 15.3 - Permitting for UT-GOM2-2	Thu 10/1/20	Fri 9/30/22								
29	Subtask 15.4 - Review and Complete NEPA Requirements	Thu 10/1/20	Sat 5/1/21								
30	M5D - Complete Pre-Expedition Permitting Requierements for UT-GOM2-2	2 Wed 12/1/21	Wed 12/1/21							♦ 12/1	
31	Subtask 15.5 - Finalize Operational Plan for UT-GOM2-2	Thu 10/1/20	Sat 5/1/21								
32	M5E - Complete UT-GOM2-2 Operational Plan Report	Mon 5/3/21	Mon 5/3/21				\$ 5/3				
33	Task 16 - UT-GOM2-2 Scientific Drilling Program Field Operations	Fri 4/1/22	Mon 7/18/22								
34	Subtask 16.1 - Mob. of Ocean Drilling and Pressure Coring Capability	Fri 4/1/22	Sun 5/1/22								
35	Subtask 16.2 - Field Project Management, Operations, and Research	Sun 5/1/22	Thu 6/30/22	1							
36	Subtask 16.3 - Demobilization of Staff, Labs, and Equipment	Wed 6/1/22	Fri 7/15/22								
37	M5F - Complete UT-GOM2-2 Field Operations	Mon 7/18/22	Mon 7/18/22								
Proje	, ct: Budget Period 5		Inacti	ve Milest	tone	Duration-only		Start-only	E	External Milestone	\$
Date	Thu 8/29/19 Split Project Summar	y I	Inacti	ve Summ	hary	Manual Summary Rollup		Finish-only	3	Deadline	*
	Milestone Milestone Inactive Task		Manu	ai Task		Manual Summary		External Tasks		Progress	

PHASE 6: Oct 2022 – Sep 2024

ID	Task Name				Start	Finish		Half 1, 2	2023	Half 2, 2023	Half 1, 202	4 Half	2, 2024	Half 1, 20
0	Budget Period 6				Sat 10/1/22	Tue 10/1/	24				I A I S I O I N I			
1	Task 1 - Project Mana	gement and Planning			Sat 10/1/22	Mon 9/30/	24							-
2	M6A - Document Re	sults of BP5 Activities			Sat 12/31/22	Sat 12/31/2	22		12/31					
3	Task 10 - Core Analysis			Mon 10/3/22	Mon 7/1/2	4	·					1		
4	Subtask 10.4 - Cont	inued Pressure Core Ar	alysis (UT-GOM2	-1)	Mon 10/3/22	Fri 3/31/23								
5	Subtask 10.5 - Cont	inued Hydrate Core-Lo	g-Seismic Synthes	is (UT-GOM2-1)	Mon 10/3/22	Fri 3/31/23								
6	Subtask 10.6 - Addi	tional Core Analysis Ca	pabilities		Mon 10/3/22	Fri 9/29/23								
7	Subtask 10.7 - Hydr	ate Modeling			Mon 10/3/22	Mon 7/1/24	4							
8	Subtask 10.11 - Con	tinued Pressure Core A	Analysis (UT-GOM	2-2)	Mon 10/3/22	Mon 7/1/24	1							
9	Subtask 10.12 - Con	tinued Core-Log Seism	ic Synthesis (UT-G	50M2-2)	Mon 10/3/22	Mon 7/1/24	4							
10	Task 13 - Maintenanc Manipulation Capabil	e & Refinement of Pre ity	ssure Core Trans	port, Storage, &	Mon 10/3/22	Mon 7/1/2	4	-						
11	Subtask 13.1 - Hydr	ate Core Manipulator o	and Cutter Tool		Mon 10/3/22	Mon 7/1/24	4							
12	Subtask 13.2 - Hydr	ate Core Effective Stre	ss Chamber		Mon 10/3/22	Mon 7/1/24	4							
13	Subtask 13.3 - Hydr	ate Core Depressurizat	ion Chamber		Mon 10/3/22	Mon 7/1/24	4							
14	Subtask 13.6 - Cont	inued Storage of Hydro	ate Cores from UT	-GOM2-1	Mon 10/3/22	Fri 3/31/23								
15	Subtask 13.7 - X-ray	Computed Tomograp	hy		Mon 10/3/22	Mon 7/1/24	4							
16	Subtask 13.8 - Pre-C	Consolidation System			Mon 10/3/22	Mon 7/1/24	4							
17	Subtask 13.10 - Stor	rage of Hydrate Core fr	rom UT-GOM2-2		Mon 10/3/22	Mon 7/1/24	4							
18	Subtask 13.11 - Hyd	rate Core Distribution			Mon 10/3/22	Mon 7/1/24	4							
19	Task 16 - UT-GOM2-2	Scientific Drilling Prog	ram Field Operat	tions	Mon 10/3/22	Thu 6/1/23		· · · ·						
20	Subtask 16.4 - Post-	Expedition Permitting			Mon 10/3/22	Thu 6/1/23								
21	Task 17 - Project Data	Analysis and Reportir	ng		Mon 10/3/22	Tue 10/1/2	4							-)
22	M6B - Complete Pre	liminary UT-GOM2-2 l	Expedition Summa	ary	Sat 12/31/22	Sat 12/31/2	22		12/31					
23	Subtask 17.1 - Sam	ole and Data Distributi	on and Archiving		Mon 10/3/22	Mon 7/1/24	4							
24	24 Subtask 17.2 - Collaborative Post-Field Project Analysis of Geologic Data and Sai Mon 10/3/22				Tue 10/1/2	4								
25	25 M6C - Initiate Comprehensive Scientific Results Volume Thu 6/1/23			Thu 6/1/23				<u>●</u> 6/1						
26	Subtask 17.3 - Scien	tific Results Volume ar	nd Technical Proje	ect Presentations	Thu 6/1/23	Mon 9/30/2	24			•				
		Task		Project Summary	1	Manual	Task		1	Start-only	E	Deadline	+	
Proje	ct: Budget Period 6	Split		Inactive Task		Duratio	n-only			Finish-only	а –	Progress		
Date:	Thu 8/29/19	Milestone	♦	Inactive Milestone	\diamond	Manual	Summ	ary Rollup		External Tasks		Manual Progress		-
		Summary	1	Inactive Summary	0	Manual	Summ	ary		External Milestone	\$			

- Cook. A. E., and Waite, W. F., (2018). Archie's saturation exponent for natural gas hydrate in coarsegrained reservoirs. Journal of Geophysical Research. DOI: 10.1002/2017JB015138
- Cook, A. E., & Sawyer, D. (2015). Methane migration in the Terrebonne Basin gas hydrate system, Gulf of Mexico. Presented at American Geophysical Union, Fall Meeting, San Francisco, CA.
- Cook, A.E., & Sawyer, D. (2015). The mud-sand crossover on marine seismic data. Geophysics, v. 80, no. 6, A109-A114. 10.1190/geo2015-0291.1.
- Cook, A.E., and Waite, B. (2016). Archie's saturation exponent for natural gas hydrate in coarse-grained reservoir. Presented at Gordon Research Conference, Galveston, TX.
- Cook, A.E., Hillman, J., & Sawyer, D. (2015). Gas migration in the Terrebonne Basin gas hydrate system.
 Abstract OS23D-05 presented at American Geophysical Union, Fall Meeting, San Francisco, CA.
- Cook, A.E., Hillman, J., Sawyer, D., Treiber, K., Yang, C., Frye, M., Shedd, W., Palmes, S. (2016).
 Prospecting for Natural Gas Hydrate in the Orca & Choctaw Basins in the Northern Gulf of Mexico.
 Poster presented at American Geophysical Union, Fall Meeting, San Francisco, CA.
- Fang, Y., Flemings, P.B., Daigle, H., O'Connell, J., Polito, P., (2018). Measure permeability of natural hydrate-bearing sediments using K0 permeameter. Presented at Gordon Research Conference on Gas Hydrate, Galveston, TX. Feb 24- Mar 02, 2018.
- Flemings, P., Phillips, S., and the UT-GOM2-1 Expedition Scientists, (2018). Recent results of pressure coring hydrate-bearing sands in the deepwater Gulf of Mexico: Implications for formation and production. Talk presented at the 2018 Gordon Research Conference on Natural Gas Hydrate Systems, Galveston, TX, February 24-March 2, 2018.

- Darnell, K., Flemings, P.B., DiCarlo, D.A. (2016). Nitrogen-assisted Three-phase Equilibrium in Hydrate Systems Composed of Water, Methane, Carbon Dioxide, and Nitrogen. Presented at American Geophysical Union, Fall Meeting, San Francisco, CA.
- Goldberg, D., Küçük, H.M., Haines, S., Guerin, G. (2016). Reprocessing of high resolution multichannel seismic data in the Gulf of Mexico: implications for BSR character in the Walker Ridge and Green Canyon areas. Presented at Gordon Research Conference on Natural Gas Hydrate Systems, Galveston, TX.
- Hammon, H., Phillips, S., Flemings, P., and the UT-GOM2-1 Expedition Scientists, (2018). Drillinginduced disturbance within methane hydrate pressure cores in the northern Gulf of Mexico. Poster presented at the 2018 Gordon Research Conference and Seminar on Natural Gas Hydrate Systems, Galveston, TX, February 24-March 2, 2018.
- Heber, R., Kinash, N., Cook, A., Sawyer, D., Sheets, J., and Johnson, J.E. (2017). Mineralogy of Gas Hydrate Bearing Sediment in Green Canyon Block 955 Northern Gulf of Mexico. Abstract OS53B-1206 presented at American Geophysical Union, Fall Meeting, New Orleans, LA.
- Hillman, J., Cook, A. & Sawyer, D. (2016). Mapping and characterizing bottom-simulating reflectors in 2D and 3D seismic data to investigate connections to lithology and frequency dependence. Presented at Gordon Research Conference, Galveston, TX.
- Hillman, J, Cook, A.E., Sawyer, D., Küçük, H.M., and Goldberg, D.S. (2017). The character and amplitude of bottom-simulating reflectors in marine seismic data. Earth & Planetary Science Letters, doi:http://dx.doi.org/10.1016/j.epsl.2016.10.058

- Hillman, J.I.T., Cook, A.E., Daigle, H., Nole, M., Malinverno, A., Meazell, K. and Flemings, P.B. (2017).
 Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico. Marine and Petroleum Geology, doi:10.1016/j.marpetgeo.2017.07.029
- Johnson, J. (2018). High Porosity and Permeability Gas Hydrate Reservoirs: A Sedimentary Perspective.
 Presented at Gordon Research Conference on Natural Gas Hydrate Systems, Galveston, TX.
- Kinash, N. Cook, A., Sawyer, D. and Heber, R. (2017). Recovery and Lithologic Analysis of Sediment from Hole UT-GOM2-1-H002, Green Canyon 955, Northern Gulf of Mexico. Abstract OS53B-1207 presented at American Geophysical Union, Fall Meeting, New Orleans, LA.
- Küçük, H.M., Goldberg, D.S, Haines, S., Dondurur, D., Guerin, G., and Çifçi, G. (2016). Acoustic investigation of shallow gas and gas hydrates: comparison between the Black Sea and Gulf of Mexico.
 Presented at Gordon Research Conference on Natural Gas Hydrate Systems, Galveston, TX.
- Majumdar, U., Cook, A. E., Shedd, W., and Frye, M. (2016). The connection between natural gas hydrate and bottom-simulating reflectors. Geophysical Research Letters, DOI: 10.1002/2016GL069443
- Malinverno, A. (2015). Monte Carlo inversion applied to reaction-transport modeling of methane hydrate in continental margin sediments. Abstract OS23B-2003 presented at American Geophysical Union, Fall Meeting, San Francisco, CA.
- Malinverno, A. (2016). Modeling gas hydrate formation from microbial methane in the Terrebonne basin, Walker Ridge, Gulf of Mexico. Presented at Gordon Research Conference on Natural Gas Hydrate Systems, Galveston, TX.

- Malinverno, A., Cook, A. E., Daigle, H., Oryan, B. (2017). Methane Hydrate Formation from Enhanced Organic Carbon Burial During Glacial Lowstands: Examples from the Gulf of Mexico. EOS Trans. American Geophysical Union, Fall Meeting, New Orleans, LA.
- Meazell, K., Flemings, P. B., Santra, M., and the UT-GOM2-01 Scientists (2018). Sedimentology of the clastic hydrate reservoir at GC 955, Gulf of Mexico. Presented at Gordon Research Conference on Natural Gas Hydrate Systems, Galveston, TX.
- Meazell, K., & Flemings, P.B. (2016). Heat Flux and Fluid Flow in the Terrebonne Basin, Northern Gulf of Mexico. Presented at American Geophysical Union, Fall Meeting, San Francisco, CA.
- Meazell, K., & Flemings, P.B. (2016). New insights into hydrate-bearing clastic sediments in the Terrebonne basin, northern Gulf of Mexico. Presented at Gordon Research Conference on Natural Gas Hydrate Systems, Galveston, TX.
- Meazell, K., & Flemings, P.B. (2016). The depositional evolution of the Terrebonne basin, northern Gulf of Mexico. Presented at 5th Annual Jackson School Research Symposium, University of Texas at Austin, Austin, TX.
- Meazell, K. (2015), Methane hydrate-bearing sediments in the Terrebonne basin, northern Gulf of Mexico.
 Abstract OS23B-2012 presented at American Geophysical Union, Fall Meeting, San Francisco, CA.
- Moore, M., Darrah, T., Cook, A., Sawyer, D., Phillips, S., Whyte, C., Lary, B., and UT-GOM2-01 Scientists (2017). The genetic source and timing of hydrocarbon formation in gas hydrate reservoirs in Green Canyon, Block GC955. Abstract OS44A-03 presented at American Geophysical Union, Fall Meeting, New Orleans, LA.

- Morrison, J., Flemings, P., and the UT-GOM2-1 Expedition Scientists (2018). Hydrate Coring in Deepwater Gulf of Mexico, USA. Poster presented at the 2018 Gordon Research Conference on Natural Gas Hydrate Systems, Galveston, TX.
- Oryan, B., Malinverno, A., Goldberg, D., Fortin, W. (2017). Do Pleistocene glacial-interglacial cycles control methane hydrate formation? An example from Green Canyon, Gulf of Mexico. EOS Trans. American Geophysical Union, Fall Meeting, New Orleans, LA.
- Oti, E., Cook, A. (2018). Non-Destructive X-ray Computed Tomography (XCT) of Previous Gas Hydrate Bearing Fractures in Marine Sediment. Presented at Gordon Research Conference on Natural Gas Hydrate Systems, Galveston, TX.
- Oti, E., Cook, A., Buchwalter, E., and Crandall, D. (2017). Non-Destructive X-ray Computed Tomography (XCT) of Gas Hydrate Bearing Fractures in Marine Sediment. Abstract OS44A-05 presented at American Geophysical Union, Fall Meeting, New Orleans, LA.
- Phillips, S.C., Flemings, P.B., Holland, M.E., Schultheiss, P.J., Waite, W.F., Petrou, E.G., Jang, J., Polito, P.J., O'Connell, J., Dong, T., Meazell, K., and Expedition UT-GOM2-1 Scientists, (2017). Quantitative degassing of gas hydrate-bearing pressure cores from Green Canyon 955. Gulf of Mexico. Talk and poster presented at the 2018 Gordon Research Conference and Seminar on Natural Gas Hydrate Systems, Galveston, TX, February 24-March 2, 2018.
- Phillips, S.C., Borgfedlt, T., You, K., Meyer, D., and Flemings, P. (2016). Dissociation of laboratory-synthesized methane hydrate by depressurization. Poster presented at Gordon Research Conference and Gordon Research Seminar on Natural Gas Hydrates, Galveston, TX.

- Phillips, S.C., *You, K., Borgfeldt, T., *Meyer, D.W., *Dong, T., Flemings, P.B. (2016). Dissociation of Laboratory-Synthesized Methane Hydrate in Coarse-Grained Sediments by Slow Depressurization.
 Presented at American Geophysical Union, Fall Meeting, San Francisco, CA.
- Phillips, S.C., You, K., Flemings, P.B., Meyer, D.W., and Dong, T. (under review). Dissociation of Laboratory-Synthesized Methane Hydrate in Coarse-Grained Sediments By Slow Depressurization. Marine and Petroleum Geology.
- Portnov, A., Cook, A., Heidari, M., Sawyer, D., Santra, M., Nikolinakou, M. (2018). Salt-driven Evolution of Gas Hydrate Reservoirs in the Deep-sea Gulf of Mexico. Presented at Gordon Research Conference on Natural Gas Hydrate Systems, Galveston, TX.
- Santra, M., Flemings, P., Scott, E., Meazell, K. (2018). Evolution of Gas Hydrate Bearing Deepwater Channel-Levee System in Green Canyon Area in Northern Gulf of Mexico. Presented at Gordon Research Conference and Gordon Research Seminar on Natural Gas Hydrates, Galveston, TX.
- Sheik, C., Reese, B., Twing, K., Sylvan, J., Grim, S., Schrenk, M., Sogin, M., and Colwell, F. (2018).
 Identification and removal of contaminant sequences from ribosomal gene databases: lessons from the census of deep life. Frontiers in Microbiology. doi: 10.3389/fmicb.2018.00840
- Treiber, K, Sawyer, D., & Cook, A. (2016). Geophysical interpretation of gas hydrates in Green Canyon Block 955, northern Gulf of Mexico, USA. Poster presented at Gordon Research Conference, Galveston, TX.

- Worman, S. and, Flemings, P.B. (2016). Genesis of Methane Hydrate in Coarse-Grained Systems: Northern Gulf of Mexico Slope (GOM²). Poster presented at The University of Texas at Austin, GeoFluids Consortia Meeting, Austin, TX.
- Yang, C., Cook, A., & Sawyer, D. (2016). Geophysical interpretation of the gas hydrate reservoir system at the Perdido Site, northern Gulf of Mexico. Presented at Gordon Research Conference, Galveston, TX, United States.
- You, K.Y., DiCarlo, D. & Flemings, P.B. (2015), Quantifying methane hydrate formation in gas-rich environments using the method of characteristics. Abstract OS23B-2005 presented at 2015, Fall Meeting, AGU, San Francisco, CA, 14-18 Dec.
- You, K., Flemings, P.B. (2016). Methane Hydrate Formation in Thick Sand Reservoirs: Long-range Gas Transport or Short-range Methane Diffusion?. Presented at American Geophysical Union, Fall Meeting, San Francisco, CA.
- You, K., and Flemings, P. B. (2017). Methane Hydrate Formation In Thick Sand Reservoirs: 1. Short-Range Methane Diffusion, Marine and Petroleum Geology.
- You, K.Y., Flemings, P.B., & DiCarlo, D. (2015). Quantifying methane hydrate formation in gas-rich environments using the method of characteristics. Poster presented at 2016 Gordon Research Conference and Gordon Research Seminar on Natural Gas Hydrates, Galveston, TX.
- You, K., and Flemings, P. B. (2018). Methane Hydrate Formation in Thick Marine Sands by Free Gas Flow. Presented at Gordon Research Conference on Gas Hydrate, Galveston, TX. Feb 24- Mar 02, 2018.

End of presentation

01 – Flemings, et al., GOM2: Prospecting, Drilling and Sampling Coarse-Grained Hydrate Reservoirs in the Deepwater Gulf of Mexico

UT-GOM2-1 Expedition - May 2017

 12 successful pressure cores in main hydrate reservoir

Ongoing Experimental Analysis: UT Pressure Core Center

(a) Pressure Core Chamber and Mini-PCATS

(b) K0 Permeameter

Production tests of increasing scale in Japan and China

In Gulf of Mexico 4,000 TCF recoverable methane in hydrate sands

2012 US Consumption ~25 TCF

(http://www.eia.gov/tools/faqs/faq.cfm?id=33&t=6).

(Frye 2008)

Combustible ice heralds clean energy

By Zheng Xin and Zou Shuo | China Daily | Updated: 2017-09-04 07:10

2017: China completed its first test exploration in the South China Sea on July 9, which lasted 60 days. Total output exceeding 300,000 cu m and daily output surpassed 5,000 cu m/day.

An Energy Coup for Japan: 'Flammable Ice'

20,000 m3/day—2013 (6 days) 8300 m3/day—2017 (24 days)

> Chinese technicians check their combustible ice mining equipment during an on-the-spot operation in Shenhu Area in the South China Sea, 320 kilometers southeast of Zhuhai city, Guangdong province. [Photo by Guo Junfeng/China Daily]

UT GOM2-1 Executed Spring 2017 May 2 Mobilize May 11 Execute May 23 Demobilize May 26 Establish shore-based lab June 3 Complete Operations

K0 Permeability Measurement

- ✓ Tests pre- and post-dissociation
- ✓ Consolidation at Hydrostatic stress
- ✓ Consolidation K0 condition
- ✓ 3 permeability tests per stress state
- (22 consolidation tests & 61 perm tests)

Initial Permeability Measurements

✓ Effective permeability (Sh=0.8) : $\sim 10^{-2}$ mD to $\sim 10^{-3}$ mD pre-dissociation

- ✓ Absolute permeability: \sim 0.5 mD to 10⁻² mD post-dissociation
- ✓ Mudrock layer in sample may drive low permeability measurement

Initial Permeability Measurements

Result of Compressibility

Consolidation Timing:

- ✓ Pre-dissociation:
- 1) Consolidation under hydrostatic stress
- 2) Consolidation under K0 conditions

Compressibility index $C_{\rm c} = 0.09$

- ✓ Post-dissociation:
- 3) Consolidation under K0 conditions
- 4) Unloading and reloading under K0 conditions Compressibility index $C_c = 0.15$

UT-GOM2-2 Scientific Drilling Program

Plan Overview

- Will occur in 2022
- UT contracts industry vessel similar to Helix Q4000
- Conventional and pressure core two holes in Terrebonne Basin at JIP LWD locations:

– <u>WR313-H002</u>

~28 pressure coring deployments, including 7 continuous pressure cores through and around the Orange Sand

– <u>WR313-G002</u>

~19 pressure coring deployments, continuous conventional coring to 250 fbsf, conventional spot coring below 250 fbsf

Introduction

What is methane hydrate?

(Collett et al., 2009)

Sandy Silt

Where are we today?

- Massive natural gas reserves trapped in hydrates in the deepwater
- For coastal nations with limited energy resources--a potential domestic energy source to provide energy security today.
- Can we produce environmentally, safely and economically?
- What are the basic flow and mechanical properties of these systems so that we can understand this behavior?

Results of Intrinsic permeability

(Fang et al., AAPG Bulletin, accept pending revisions)

- Sandy silt: 11.8 mD (1.18×10⁻¹⁴ m²) at in-situ effective stress (3.8 MPa)
- Clayey silt: 3.84×10^{-4} mD (3.84×10^{-19} m²) at in-situ effective stress (3.8 MPa)
- Intrinsic permeability is lithology-dependent.

Capillary behavior of Sandy Silt & Clayey Silt

(Fang et al., AAPG Bulletin, accept pending revisions)

Facies	Hydrate Saturation	Equivalent Pore Diameter (micron)
Sandy silt	0%	17.28
Sandy silt	90%	0.35
Clayey silt	0%	0.18
Clayey silt	10%	0.07
Clayey silt	20%	0.06
Why hydrate does not form in lithofacies 3?

(Fang et al., AAPG Bulletin, accept pending revisions)

Path (1): Methane source in clayey silt (biogenic degradation of organic matter) Path (2): Methane invades in sandy silt (free gas invasion)

UT-GOM2-2 Scientific Drilling Program

Coring Plan – Graphical Representation

UT-GOM2-2 Expedition - 2022

