First Ever Field Pilot on Alaska's North Slope to Validate the Use of Polymer Floods for Heavy Oil Enhanced Oil Recovery (EOR)

a.k.a Alaska North Slope Field Laboratory (ANSFL) DE-FE0031606

John Barnes, Samson Ning and Abhijit Dandekar Hilcorp Alaska LLC. and University of Alaska Fairbanks

U.S. Department of Energy - National Energy Technology Laboratory

The objectives of the Program are to:

- Identify and accelerate development of economically-viable technologies to more effectively locate, characterize, and produce natural gas and oil resources, in an environmentally acceptable manner.
- Characterize emerging oil and natural gas accumulations at the resource and reservoir level and publish this information in a manner that supports effective development.
- Catalyze the development and demonstration of new technologies and methodologies for limiting the environmental impacts of unconventional oil and natural gas development activities.

Presentation Outline

- ANSFL Overview
- Review of Test Site Location and Details
- Project Progress Field Level
- Technical Approach and Status
- Accomplishments to Date
- Synergy Opportunities
- Project Summary
- Appendix

Alaska North Slope Field Laboratory: Project Overview

Source: AK DNR, Division of Oil & Gas

- Significant heavy oil resource (20-25 billion bbls); too large to ignore.
- Poor waterflood sweep due to mobility contrast.
- Limitation of deploying
- thermal methods due to

"permafrost".

Light crude diluent still
available for high viscosity oil
transport through Trans
Alaska Pipeline System.

Comprehensive \$9.6 million Research Program over Four Years

- High probability of success
 - \checkmark Polymer flood has been proven effective in Canada and China
 - ✓ Need to figure out implementation details and quantify benefits on ANS
 - ✓ Synergy effect of polymer, low salinity water, horizontal wells, and conformance treatments
- Joint efforts among government, academia, and industry
 - ✓ Integrate lab work, reservoir simulation, field pilot performance, injection conformance and flow assurance studies in an iterative optimization process
 - ✓ Disseminate learnings from the pilot project across the industry (AAPG, SPE, URTeC etc.)

4

Test Site and Reservoir

- Milne Point (MPU), 30 miles NW of Prudhoe Bay.
- Schrader Bluff formation, Porosity: 31–35%, Permeability: 100–3,000 mD.
- Low reservoir temperature: $\sim 70^{\circ}$ F.
- Oil API: ~15 with in-situ oil viscosity of 330 cP.
- Low salinity source water: 5,000 ppm.

Horizontal Well Patterns

Poor Waterflood Sweep

Injection Wellbore Schematic

Project Progress Since June 1 – Field Level

- Initial polymer selection: SNF FlopaamTM 3630, 100 super sacs already on site. Each sac contains 1650 lbm of polymer (~ 1 day of injection).
- Polymer equipment installation and testing completed.
- Pre-polymer tracer test, pressure fall off test completed, injection profile log soon.
- Polymer injection targeted to start mid August.

Polymer Injection Unit

Technical Approach and Status

No large scale polymer projects in the US, and many unresolved issues that need to be addressed via:

- Laboratory corefloods
 - optimization of injected polymer viscosity/concentration, quantification and retention.
 - optimization of injection water salinity and identification of conformance control strategies.
- Reservoir simulation
 - history matching (HM) of laboratory corefloods, waterfloods.
 - optimization of the polymer injection strategy for the project reservoir.
 - scale up to full field oil recovery from polymer injection. 11

Technical Approach and Status

- Implementation of polymer flood field pilot
 - prior lab studies used in initial polymer selection.
 - interactively integrate lab tests, reservoir simulations, and field tests.
 - long time (years) required for polymer injection to quantify the benefit.
- Flow assurance
 - develop literature based initial strategy to deal with produced fluids.
 - revise flow assurance strategy concurrently.

Selection of Polymer Viscosity

- Want to make the water flood mobility ratio (M) favorable.
- Want to overcome the permeability contrast.

Selection of Polymer Viscosity

In some Canadian reservoirs, beneficial relative permeabilities allowed 25 centipoise (cP) polymer to effectively displace 1600 cP oil.

At the Daqing polymer flood in China 150-300 cP polymer was used to displace 10 cP oil because they believed oil saturation (S_{or}) was reduced.

Polymer Retention and Inaccessible Pore Volume

Polymer retention increases polymer needed and reduces permeability Inaccessible Pore Volume (IAPV) reduces polymer needed and traps oil

Optimization of Injection Water Salinity

- Conduct lab experiments and simulation work to elucidate the effect of salinity on oil recovery.
- Obtain favorable injection water salinity.

Figure source: Bai, 2013; Alhuraishawy, Bai, and Wei (2018)

Conformance Control

• Conduct laboratory tests and simulation work to identify proper conformance control strategy.

Figure source: Bai et. al. (2013) and Alhuraishawy, Bai, and Wei (2018)

Reservoir Simulation Objectives

- Scaling laboratory experiments to the pilot scale
- Calibration to pilot performance
- Optimization of polymer injection strategy for pilot test
- Polymer flood benefit scaled up for economic analysis

Reservoir Simulation

Flow Assurance

> Oil/water separation techniques

- \checkmark Mechanical method
 - API gravity separator
 - Hydrocyclones/centrifugation
- \checkmark Chemical method
 - Emulsion breaker
 - Chemical flocculation
- \checkmark Filtration method
 - Media filter (such as Walnut Shell Filter) and membrane filter

\checkmark Hybrid method

• Hybrid centrifugal and cyclonic flotation

Flow Assurance Experiments

- Design of experiments (DOE) based on literature review (main controlling variables) and initial field data
 - fixed parameters oil type and temperature
 - variables water salinity; demulsifier type; polymer type; controlled polymer shearing; electrostatic separation (ΔV)
 - resulting data separation efficiency, Oil/Water or Water/Oil emulsions, viscosity and stability as a function of test variables

Figure source: <u>www.snf.us;</u> Cheng (2018) and Shukla (2011)

Demulsifier Evaluation

\succ Bottle test method

 \checkmark Add certain amount of demulsifier into the prepared crude oil emulsion, mix thoroughly, and dehydrate at desired temperature

\succ Expected outcomes

 \checkmark Recommended demulsifier

\checkmark Recommended application concentration

General Bottle Test Procedure

Figure source: Hirasaki et. al. (2011)

Accomplishments to Date

- Award effective June 1, 2018.
- Sub-awards to Hilcorp, New Mexico Tech, Missouri S&T, and University of North Dakota issued.
- Project Management Plan (PMP) completed.
- First version of Data Management Plan (DMP) completed.
- Rock and fluid samples, and reservoir characterization data sent to university participants.
- Preliminary coreflooding tests have been initiated.
- Literature review on produced fluid treatment completed.
- Pre-polymer tracer and PFO tests completed.
- Field polymer injection starting soon.

Lessons Learned

- Multi-disciplinary industry academia teamwork is a pre-requisite for successful execution of a research program of this scale.
- The use of existing wells in the project area reduces risks associated with well availability and timing of operations.
- As the project moves forward careful preplanning and being proactive will ensure deliverables within budget and on time.

Synergy Opportunities

- Potential synergy between (FE0024558) that aims to develop swelling-rate-controllable particle gels to enhance CO₂ EOR.
- BP Alaska, as a working interest owner, is fully supportive of the project.
- ConocoPhillips Alaska is closely watching the developments, and may be interested in participating in the future.
- Potential interest amongst other ANS independents such as Burgundy Exploration?
- Access to field samples and data in the near future, conducive to continued public – private partnership.

Project Summary Research program in early stages, all the preparatory work for the initial

- Research program in early stages, all the preparatory work for the initial field pilot done, industry academia team ready to embark on the project.
- Immediate next steps

Appendix

-These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program

- The primary goal of ANSFL project is to validate the use of polymer floods for heavy oil Enhanced Oil Recovery (EOR) on Alaska North Slope (ANS).
- Benefits to accrue from the proposed research:
 - 8-10% of OOIP recovery increment over waterflooding.
 - extend the life of the Trans Alaska Pipeline System.
 - environmentally friendly EOR method.

Project Overview

Goals and Objectives

- The specific objectives that would enable the achievement of project goals:
 - assess polymer injectivity into the Schrader Bluff formations
 - evaluate water salinity effect
 - estimate polymer retention
 - assess incremental oil recovery vs. polymer injected
 - assess effect of polymer flow back on surface facilities
- Major decision points and the success criteria based on:
 - polymer injectivity
 - conformance control
 - impact of produced polymer on facilities
 - switching from polymer to water injection
 - feasibility of polymer flood

Organization Chart

Gantt Chart

Bibliography

-None to report at this time. However, the research team endeavors to publish in high impact petroleum engineering focused refereed journals and/or suitable SPE conferences.

Acknowledgements

Thanks to US DOE, NETL, Hilcorp Alaska LLC and BP Exploration Alaska

