the Energy to Lead

Flue Gas Water Vapor Latent Heat Recovery for Pressurized Oxy-Combustion

Project DE-FE0025350 NETL Program Manager: Steve Markovich

Project Manager: Dexin Wang – Institute Engineer Gas Technology Institute

Project Overview

General Funding: \$2,648,945

- DOE = \$1,999,795. Cost share = \$649,150 (24.5%)
- Performance Period:
 - Sep 1 2015 Aug 31 2018
- Participants:
 - Gas Technology Institute (lead)
 - Media & Process Technology
 - Florida International University
 - SmartBurn LLC

Project Overview

Overall Project Objectives

- Facilitate energy and water recovery to improve the efficiency of pressurized oxy-coal power boilers
- Design, build, and test a high-pressure modular version of the Transport Membrane Condenser (TMC) at pilot scale to evaluate its performance and analyze the results for future commercial-scale power plants.

Technology Background

GTI developed Transport Membrane Condenser (TMC) technology

- Nanoporous ceramic membrane selectively recovers water vapor and latent heat from natural gas combustion flue gases
 - Increases boiler efficiency and saves water, avoiding corrosive condensate
- Commercialized for gas- fired industrial boilers in 2009.

Technology Background

Non-boiler industrial applications (e.g., commercial laundry)

- Home furnace efficiency and humidification (demonstrated in 6 homes). CEE, an independent technology company has completed 4 TMH installations and testing by 2017 sponsored by MN commerce department. Final report see link below: <u>http://mn.gov/commerce-stat/pdfs/card-report-retrofit-furnace.pdf</u>
- Existing power plants (slipstream from coal-fired power boiler)

Technology Application for Pressurized Oxy-Coal boiler

- ✓ Latent heat recovery can boost power generation efficiency of pressurized oxy-coal boiler by up to 14%
- ✓ TMC can recover clean water from flue gas equal to 2.0% of steam demand
- ✓ No boiler modifications required
- ✓ Reduced dew point of flue gas

- ✓ Durability of TMC in flue gas with coal-derived contaminants (particulates, SO₂, and NO_x)
- ✓ Integrity of ceramic multi-tube sealing in pressurized TMC operation
- ✓ Controllability and performance

Approach/Scope

Experimental design

- Single TMC membrane bundle housed in a pressure vessel, connected in parallel and/or series
- 🖵 Work plan
 - Develop and build high-pressure modular version of the TMC
 - Install TMC skid at GTI's Flex Fuel Gasification Facility
 - Gasify PRB coal, convert and condition syngas to simulate exhaust from pressurized slurry-fed oxy-coal combustion with FGD at 1-3 MW_{th} scale
 - Test TMC unit in different configurations

Success criteria

- Demonstrate TMC performance on both water vapor and heat recovery
- Demonstrate TMC meets expectations for controllability and durability

Process Modeling and Design Evaluation

Process Modeling for System Design and Operation

- Model for commercial reference case is a 550-MW_e slurry feed oxy-coal boiler using PRB coal with 50% moisture
- Flue gas is recirculated from downstream of FGD

Process Modeling and Design Evaluation

Process Modeling for System Design and Operation

- Developed and updated model for 2.7-MW_{th} pilot simulation of commercial case, actual flue gas going to the TMC equivalent to 1.24MWth coal boiler flue gas
- Coal is gasified, syngas filtered, and slipstream converted with oxygen, CO₂, water, and steam to obtain conditioned flue gas for TMC testing
- Portion of TMC water is recycled and cooled to simulate plant water supply

9

CFD for Detailed TMC Module Design

CFD Simulation to Define TMC Design Parameters

- Single TMC module CFD study for different tube arrangement effect
- Baffle effect has been studied, and the 3-baffle configuration shows optimum heat and mass transfer

CFD for TMC System Configurations

CFD Simulation to Define TMC Design Parameters

- 6 TMC modules arranged into different series and parallel configurations based on flue gas flow
 - 3x2 (3 in series, 2 parallel sets)
 - 2x3 (2 in series, 3 parallel sets)

TMC Module: Spaced tube bundles design, fabrication, and testing

Completed Pilot Scale TMC Membrane Bundle Fabrication

- ✓ Completed preparation of seven pilot scale TMC membrane bundles
- ✓ Dual ended potting successfully demonstrated in thermal cycling to 200° C
- ✓ Potting based upon high performance glass reinforced epoxy

TMC Bundle Fabrication Layout (4" OD x 36" Length; ca. 90 Tubes)

Finished TMC Bundles

Teflon Baffles for Shell Side Gas Flow Distribution

High-Pressure TMC Module Housing Design, Fabrication, and Testing

Completed Fabrication of the TMC Housing

- \checkmark Seven pilot scale TMC membrane housings were fabricated and tested
- \checkmark Membranes and modules tested to 200°C and 200 psig.

Fully Assemble TMC Module

Bundle Installed in Module

TMC Test System Configuration and Control

Design

NETL Project Review Meeting - August 14, 2018

Pressurized Oxy-Coal Pilot System Test System

15

TMC Test Skid Installation and System Configuration

Test results—Screen shot in operation

Results Summary and Next Step

Result summary

- Directly measured heat and water recoveries from both flue gas and water sides, and they match very well.
- Flue gas water vapor volume % drops from 40 to 50% to below 1%, facilitates next step CO2 compression and capture.
- Recovered waste heat can be added to boiler feed water loop to boost boiler system efficiency.
- Test system is robust and with good controllability.
- Next: Scale up and integration evaluation for commercial scale plant
 - Performance and Cost optimization for membrane module manufacture, TMC system design, and control;
 - Commercial plant integration study to achieve the best economy.

Progress & Current Status

Schedule Update

	BUDGET PERIOD I									BUDGET PERIOD II																			
		201	5		2016									2017								2018							
Tasks	S	0	N D	J	F	М	A	N J	IJ	Α	S	0	N D	J	F	M	A M	J	J	A S	0	Ν	D	JF	F N	1 A	М	ΙJ	А
1.0 Project Management and Planning		М1									М2																		M4
2.0 Process Modeling and Design Evaluation																											\Box		
2.1 Process Modeling for System Design																													
2.2 CFD Simulation to Define TMC Design Parameters																													
3.0 TMC Unit Design, Fabrication, and Assembly for High Pressure																													
3.1 Spaced Tube Bundles Design, Fabrication and Testing																											\Box		
3.2 High Pressure Bundle Housing Design, Fabrication and Testing																													
3.3 TMC Unit Assembly and System Control Setup																													
4.0 Pressurized Oxy-Coal Pilot Test System Preparation and Modifications																											\Box		
4.1 Feedstocks and Raw Material Preparation																													
4.2 Test System Modifications																													
4.3 Test Plan																													
5.0 Overall Test System Installation and Shakedown																													
5.1 TMC System Installation and Control Integration with Oxy-Coal Test Rig																										М3			
5.2 System Shakedown																													
6.0 System Performance Testing for Latent Heat Recovery																													
6.1 TMC Performance Test #1																													
6.2 TMC Performance Test #2																													
6.3 Result Summary and Future Development Directions																													
7.0 Scale-Up and Integration Evaluation for Commercial Scale Power Plant																													
		Plan																											
		To D)ate																										

Thanks!

Questions?

Technical Contact: Dexin Wang

Ph: 847-768-0533

Email: dexin.wang@gastechnology.org

20