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and Methane Over Conductive Metal Oxides
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Structure-controlled product selectivity

Journal of Physical Chemistry 
Cover (Dec. 2018)

“Atomically Precise” nanocatalysts

Electrochemical catalyst design

ACS Catalysis, 2019, 9, 5375 

Surface-science enabled electrocatalysis

JPCC, 2018, 122, 49, 27991 3



Appealing thermal route: Dry Reforming of Methane (DRM)

Traditional thermal DRM is 
extremely challenging due to 
high temperatures (700+ oC)
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Our approach: microwave-active catalysts!
Leverages excess renewable 

(curtailed) electricity

CO2

CH4

H2
CO

microwave 
reactor

La + Sr

Cobalt and 10% dopant 
(Mn, Fe, Ni, Cu)

Oxygen

Tunable catalyst composition “LSC-M”
La0.8Sr0.2Co0.9M0.1O3 

Efficient Catalyst Heating

• Conductive mixed-metal oxide catalysts stable at high temps

• MWs selectively heat catalyst bed … not entire reactor volume!

• Dopants tune reactivity

Manuscript and patent application in preparation. 
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Doped LSC-M Catalysts

6*No evidence of significant dopant segregation

La + Sr

Cobalt and dopant    
(Mn, Fe, Ni, Cu; 10%)

Oxygen

Tunable catalyst composition “LSC-M”

La0.8Sr0.2Co0.9M0.1O3 

Synchrotron XRD Fresh Catalysts

λ = 0.24136 Å  (51.4 keV); APS 17-BM-B  
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Microwave-assisted heating

All catalyst show microwave heating & rapid on-off cycling  (200-300oC / min)
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Dopant control MW-DRM activity
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Dopant control MW-DRM activity
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Dopant control MW-DRM activity
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Mn and Fe dopants drastically improve DRM conversion rates

** LSC-Mn:  H2/CO ratio:  0.92 ± 0.03 over 10 hours of operation @ 90W **



Monitoring ex-situ phase changes during MW-DRM
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• Undoped LSC initially forms Ruddelson-
Popper perovskitic phase 
(    RP: strong microwave absorber)

• After continued reaction
• Significant loss of perovskitic phases
• Formation of SrOx, La2O3 and Co
• Loss of MW absorptivity

Perovskitic Phases
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Relative Stability of doped LSC-M Catalysts
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Relative Stability of doped LSC-M Catalysts
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1000 nm 6 μm

LSC-Mn LSC-Cu

*From post-reaction XRD

Formation of Small Co NPs on LSC-Mn
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Electropositive dopants increase Oxygen Bader charge (ionicity) and prevent catalyst reduction

Understanding Catalyst Stability
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Experimentally observed with electronic structure through O K-edge XAS

Understanding Catalyst Stability
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• Ex situ studies reveal stability and phase changes after the reaction.

• Difficult to probe in situ changes within the microwave reactor.

• We have an optical measurement of catalyst temperature during MW DRM.

• Can we utilize thermal DRM to precisely monitor structure vs temperature under reaction 
conditions? 

What are the catalytically active sites? 

We want to characterize the catalyst surface during DRM to better 
understand structure-property relationships



Thermal DRM confirms reactivity of LSC-Mn
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• Thermal DRM starts around 775oC in traditional packed-
bed, thermal reactor.

• Higher temperature than optically measured in MW 
reactor

• Optical measurement averaged over a 5mm spot on 
catalyst bed 

• We likely underestimated MW temperature due to 
formation of micro-scale hot-spots

• Consistent structural changes based on post reaction 
thermal DRM up to 1000 oC
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In situ synchrotron XRD: active site identification
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In situ synchrotron XRD: active site identification
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Moving forward: pure gas DRM with LSC-Mn
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• High single-pass conversion still 
possible with pure gases

• 100% CO2 + 100% CH4

• Higher wattage required compared 
with dilute gases
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Extrapolated System Performance

Conventional methane steam reforming: ~30 kWhr/Kg H2 
• Extremely carbon intensive: ~10 tonnes CO2 / tonne H2

2020 DOE (EERE FCTO) electrolyzer target: ~45 kWhr/Kg H2 ($2/kg H2)
• Scaling studies with larger MW reactor
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Scaling Studies
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Conclusions
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1. Doped LSC is promising catalyst for microwave-assisted DRM
• Reduced heat management may allow non-traditional reactor designs
• Fast on/off cycling allows interrupted operation
• Load following and/or reactant availability

2. Mn-Doped LSC-Mn shows superior performance
• More electropositive dopants transfer charge density to oxygen atoms
• Prevents catalyst reduction 
• Sustains MW absorbing perovskitic phases
• Prevents formation of large Co particles

3. In situ XRD identified Co nanoparticles as likely active sites

4. Next steps: Scaling, TEA/LCA, catalyst optimization (co-doping), contaminants
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Questions or Comments? 
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Thank you for your attention!

Douglas.Kauffman@NETL.DOE.GOV
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