Catalytic Conversion of CO₂ into Value Added Products

Douglas R. Kauffman

08/17/2018

U.S. DEPARTMENT OF ENERGY

General Approach: Electrochemical CO₂ Conversion

Electrochemistry moves electrons

General Approach: Electrochemical CO₂ Conversion

Designing CO₂ Electrocatalysts

Reaction Coordinate

- Large energy input or poor efficiency ... Wasted energy = \$\$\$?
- Large Product Distribution... <u>Separation = \$\$\$</u>

ATIONAL

NOLOGY

"Coinage" Metal Catalysts

NATIONAL RG TECHNOLOGY LABORATORY

6

J. Am. Chem. Soc. 2012; J. Phys. Chem. Lett. 2013; Chemical Science 2014; ACS Applied Materials and Interfaces 2015; J. Chem. Phys. 2016; ACS Catalysis 2016; MRS Commun. 2017, J. Phys. Chem. C. 2018, US Patent 9,139,920.

Nanostructured copper oxides as a starting point

• Previously shown that surface oxides promote $CO_2 \rightarrow CO$

Kauffman et. al. JPCL 2011.

Li and Kannan JACS 2012

We want

- High surface area & large density of reactive sites
- High concentration of oxide groups
- High porosity for good mass transport

Nanostructured CuO Inverse Opals

Selective and Stable CO Formation

Almost no H_2 below -1V, minor CH_4 and HCOOH, trace C_2

- ~8x more selective than commercially available CuO powder
- ~10-60x more selective than commercially available CuO nanoparticles

Almost no H_2 below -1V, minor CH_4 and HCOOH, trace C_2

- ~8x more selective than commercially available CuO powder
- ~10-60x more selective than commercially available CuO nanoparticles

Catalyst retains significant fraction (~20-30%) of oxides during 6 hour CO₂ reduction

- Ongoing DFT calculations for CO₂ reduction on Cu-oxide vs Cu
- Provide atomic level details on product selectivity

Transitioning from H-Cell into Gas Diffusion Electrolyzers

- CO₂ dissolved in 0.1M KHCO₃
- Mass transfer & current density limitations
- Not very scalable

Anode

- Gaseous CO₂ reacted at cathode
- Much higher mass transfer & current density
- Scalable (e.g. electrolyzer stacks)

Very different reaction conditions; process parameters need optimized

"Bridging the pressure gap"

I.S. DEPARTMENT OF

NETL Surf.

Sci. Pubs:

Surf. Sci. 2008, 602, 932.; J. Phys. Chem. C 2009, 113, 11104.; Surf. Sci. 2010, 604, 627; J. Phy. Chem. C 2011, 115, 4163; J. Chem. Phys. 2011, 134, 104707; J. Am. Chem. Soc. 2011, 133, 10066; J. Phys. Chem. Lett. 2011, 2, 3114; J. Phys. Chem. Lett 2012, 4, 53; J. Phys. Chem. C 2016, 120, 8157; J. Phys. Chem. Lett. 2016, 7, 1335; Surf. Sci. 2017, 658, 9; Phys. Chem. Chem. Phys., 2017, 19, 5296; Top. Catal. 2018, 61, 499.

ATIONAL

HNOLOGY

Tafel slope = 75 \pm 9 mV dec⁻¹

Spectroscopic Signature of OER Active Sites: Perimeter Fe sites

Perimeter Fe Sites are O₂ Evolution Reaction Centers

NATIONAL

TEC

HNOLOGY

- 1. Developing a variety of approaches for catalyst design
 - Precise identification of structure-property relationships
 - Couple with DFT modeling
- 2. In situ X-ray characterization (XANES, EXAFS, XRD, XPS)
 - Provide information on structure and chemical properties during reaction
 - Refine DFT models
- 3. Incorporate into realistic reactor architectures
- 4. New concepts (next year's presentation) ... microwave-assisted thermal catalysis

Acknowledgements

Echem

Thuy Duong Nguyen Phan Douglas Kauffman

STM

Xingyi Deng Junseok Lee

Dominic Alfonso

DFT Dan Sorescu De Nyago Tafen

XAS,
XAS,
XRD & Congjun Wang, Yang Yu
Amitava Roy (LSU / CAMD), Junsik Lee (SSRL)
Houlin L. Xin (BNL / CFN)

Acknowledgement: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Questions or Comments?

We welcome any suggestions and/or collaborations!