Monitoring of Geological CO₂ Sequestration Using Isotopes and Perfluorocarbon Tracers

Project Number FEAA-045

David E. Graham¹

J. Moortgat², R. Soltanian², S. M. Pfiffner³, T. J. Phelps³, D. Zhu², and D. R. Cole²

2

3 THEUNIVERSITY of TENNESSEE

U.S. Department of Energy

National Energy Technology Laboratory

Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration:

Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 13-16, 2018

Presentation Outline

- Tracers & their applications to C storage
- Cranfield CO₂ storage pilot site
 - PFT simulations
 - CH₄ exsolution tracer
- Coupling reaction modeling with transport simulations
- Hydrocarbon interference with PFT analysis
- Accomplishments & Synergies

Candidate Tracers

(substances used to follow the course of a process)

Brines: Native non-conservative tracers that respond to changes

pH, alkalinity, electrical conductivity Cations: Na, K, Ca, Mg, Σ Fe, Sr, Ba, Mn Major anions: Cl, HCO₃, SO₄, F, Br Organic acids: acetate, propionate, formate, oxalate, etc. Other organics: DOC; methane, CO₂, benzene, toluene

<u>Gases</u>: Native conservative tracers or added conservative tracers Gases: N₂, H₂, O₂, CO₂, CO, CH₄, C₂ – C_{n+} Noble gas tracers: Ar, Kr, Xe, Ne, He (and their isotopes) Perfluorocarbon tracers (PFTs): PMCP, PECH, PMCH, PDCH, PTCH (SF₆)

<u>Isotopes</u>: D/H, ¹⁸O/¹⁶O, ⁸⁷Sr/⁸⁶Sr in water, DIC, minerals; ¹³C/¹²C in CH₄, CO₂, DIC, DOC, carbonates

Benefit to Program

Geologic Storage, Simulations, and Risk Assessment

- Provide information on physical and geochemical changes in reservoir, ensuring CO₂ storage permanence.
- Facilitate fundamental understanding of processes impacting behavior of fluids
 —diffusion, dispersion, mixing, advection, capillarity, and reaction to improve storage efficiency.
- Ground-truth behavior of fluids, CO₂ transport properties that can be used to constrain reservoir simulation models, predicting CO₂ storage capacity & designing efficient MVA programs.

4

Project Overview

Current Goals and Objectives

Provide methods to interrogate the subsurface that will allow direct improvement of CO₂ storage

- Incorporate CO₂-brine chemical and isotopic reactions and transport into simulations
- Assess efficiency of perfluorocarbon tracer analysis using capillary adsorption tubes in a hydrocarbon-rich matrix

Cranfield Pilot Site, Mississippi

Carbon Storage Project: Detailed Area of Study

Thanks to:

- Hovorka & Hosseini @UT BEG
- LBNL, SECARB
- Sandia Technology
- Denbury Resources

Extracted from > 60 million element model by UTBEG Hosseini et al., *IJGCC* (2013)

- 155 × 195 × 24 m³, inclined in *x* and *y*
- 64 × 51 × 79 = 257,856 unstructured grid cells,
- F2 and F3 well locations (70, 100 m) from Ajo-Franklin et al., *IJGGC*, 2013
- Petro-physical properties for 8 facies

Top View – Cranfield DAS 2009 CO_2 and PFT Injection Campaign CO_2 PMCH Injection (0 & 11 days)

Soltanian MR, Amooie MA, Cole D, Graham D, Pfiffner S, Phelps T, Moortgat J (2018) Transport of perfluorocarbon tracers in the Cranfield Geological Carbon Sequestration Project. Greenhouse Gases: Science and Technology 8(4):650-671

Simulating PFT Injection Campaign

2009-2010 Breakthrough Curves

Soltanian MR, Amooie MA, Cole D, Graham D, Pfiffner S, Phelps T, Moortgat J (2018) Transport of perfluorocarbon tracers in the Cranfield Geological Carbon Sequestration Project. Greenhouse Gases: Science and Technology 8(4):650-671

Competitive Dissolution of CO₂ Versus CH₄ in Brine

Soltanian MR, Amooie MA, Cole DR, Darrah TH, Graham DE, Pfiffner SM, Phelps TJ, Moortgat J (2018) Impacts of Methane on Carbon Dioxide Storage in Brine Formations. Groundwater 56(2):176-186

Simulated CH₄ Breakthrough Agrees With Field Data

Soltanian MR, Amooie MA, Cole DR, Darrah TH, Graham DE, Pfiffner SM, Phelps TJ, Moortgat J (2018) Impacts of Methane on Carbon Dioxide Storage in Brine Formations. Groundwater 56(2):176-186

Coupling Flow & Transport with Geochemical Reactivity

Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations

Chapter 43 of Section A, Groundwater Book 6, Modeling Techniques

Techniques and Methods 6-A43

U.S. Department of the Interior U.S. Geological Survey

Validation Example: Transport & Cation Exchange

Same Problem in 2D Homogeneous & Heterogeneous Domains

Porosity field

Modeling Overview & Next Steps

- 2016: CO_2 -H₂O flow & transport in high-resolution static model of DAS with advanced EOS.
- 2017: Addition of perfluorocarbon and SF_6 tracers.
- 2018 (early): Addition of CH₄ to study competitive dissolution/exsolution, formation of free gaseous CH₄. Excellent agreement with field data for all above.
- 2018 (late): Addition of reactive transport to complete comprehensive model of all trapping mechanisms.
- 2018-2019: Collaborate with NETL RIC to validate geochemistry and then use model to interpret lab-to-field data (e.g., Mt Simon core to Cranfield DAS).
- Consider reactive transport both in target formation but also in potential cap-rock failures.

Do Hydrocarbons Interfere with PFT Sampling & Analysis?

- Minimal interference with GC-ECD analysis by direct injection
- Sorbent tubes can be used to concentrate PFTs from gas samples.
- Potential competition in sorbent tube sampling
- Created a set of PFT standards in 1-L gas matrices:
 - CO₂
 - Natural gas
 - Diesel-saturated CO₂

- Loaded on AMBERSORBTM in quartz sorbent tube
- Analysis at NETL RIC (Sean Sanguinto) using thermal desorption and GC-NICI-MS

Decreased Efficiency of PFT Adsorption, Desorption and Analysis

Increased PFT Breakthrough to Downstream Sampler Tube

Lessons Learned & Next Steps

- Hydrocarbons substantially reduce the efficiency of perfluorocarbon adsorption to AMBERSORBTM.
- The most volatile PFT (PMCP) dissolved in a CO₂ matrix saturated with diesel could not be detected on sorption tube samples using GC-NICI-MS.
- Diesel matrix also caused early breakthrough of samples during active sampling with sorption tubes, introduced high variability in sorption tube samples, and substantially reduced the sensitivity of analysis for all PFTs.
- Research and development activities are needed to identify new sorbents and PFT capture strategies that are more robust to hydrocarbons in reservoir gas matrices.

Synergy Opportunities

- Collaborate with NETL RIC to validate geochemistry and then use model to interpret lab-to-field data (e.g., Mt Simon core to Cranfield DAS).
- Collaborative PFT sorbent testing in hydrocarbon-rich matrices
- New tracer test campaigns
- Sharing best practices for tracer analysis

Project Summary

- Simulated both PFT experiments at Cranfield DAS
- Validated CH₄ exsolution modeling with excellent match to field measurements
- Coupling geochemical reaction modeling with transport modeling for dynamic 3-D reservoir simulations
- Demonstrated significant hydrocarbon interference with sorption tube sampling of PFTs
- Assessing options to reduce interference and increase selectivity using advanced sorbents
- We welcome collaborations

Appendix

Project Organization

Sean Sanguinito (NETL RIC)

Gantt Chart

										Planned	Planned	Actual	Actual	
Task	Milestone Description*	Fiscal Year 2018				Fiscal Year 2019				Start	End	Start	End	Comment (notes, explanation of deviation from plan)
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Date	Date	Date	Date	ii oin pian)
	Prioritization of reactive													
	transport processes for													
	simulation from discussions													
1.1	with NETL researchers									8/17	12/17	8/17	1/18	
	Prepare PFT standards in													
	hydrocarbon matrices for													
	sorbent tube test and GC-MS													
2.1	analysis at NETL									9/17	12/17	9/17	12/17	
	Universal dynamics of gravito-													
	convective mixing of CO2 in													
	3D heterogeneous porous													
	media and implications for													
	geological carbon													
FY17	sequestration									6/17	12/17	5/17	12/17	
	Report on efficacy of sorbents													
	to improve PFT capture and													
2.1	analysis									1/18	6/18			
	Report on how pattern													
	formation and its evolution													
	can provide unique and easy-													
	to-use predictive tools for the													
	long-term dissolution-trapping													
	of CO2, enhanced by gravito-													
1.2	convective mixing									10/17	9/18			
	Initial incorporation of													
	geochemical reactions and													
	stable isotope tracers into the													
1.3, 1.4	Osures reservoir simulator									6/18	9/18			
2.2	Report on new adsorbent technology for PFT sampling									1/18	9/18			
	Survey field test opportunities													
	for enhanced PFT sampling													
2.2	technology									8/18	12/18			
	Final report on CO2 trapping													
	mechanisms, with a focus on													
1.5	capillary trapping									10/18	6/19			
	Assess the role of fractures on													
1.6	CO2 trapping mechanisms									10/18	9/19			

Bibliography

Soltanian, M.R., Amooie, M.A., Cole, D.R., Graham, D., Pfiffner, S., Phelps, T., and Moortgat, J., "Transport of Perfluorocarbon Tracers in the Cranfield Geological Carbon Sequestration Project", Greenhouse Gases, Science and Technology (2018), 8(4), 650–671. doi:10.1002/ghg.1786.

Dai, Z., Zhang, Y, Stauffer, P.H., Bielicki, J.M., Amooie, M.A., Zhang, M. Yang, C., Zou, Y., Ampomah, W., Xiao, T., Jia, W., Middleton, R.S., Zhang, W., Sun, Y., Moortgat, J., and Soltanian, M.R., "Heterogeneity-assisted carbon dioxide storage in marine sediments", Applied Energy (2018), 225, 876–883. doi:10.1016/j.apenergy.2018.05.038.

Moortgat, J., "Reservoir Simulation with the Cubic Plus (Cross-) Association Equation of State for Water, CO2, Hydrocarbons, and Tracers", Advances in Water Resources (2018), 114(C), 29-44. doi:10.1016/j.advwatres.2018.02.004.

Soltanian, M.R., Dai, Z., Yang, C., Amooie, M.A., Moortgat, J., "Multicomponent Competitive Monovalent Cation Exchange in Hierarchical Porous Media with Multimodal Reactive Mineral Facies". Stochastic Environmental Research and Risk Assessment (2018), 32(1), 295–310. doi:10.1007/s00477-017-1379-y.

Moortgat, J., Schwartz, F., and Darrah, T.H., "Numerical Modeling of Methane Leakage in Fractured Tight Formations", Groundwater (2018), 56(2). doi:10.1111/gwat.12630.

Soltanian, M.R., Amooie, M.A., Cole, D.R., Darrah, T.H., Graham, D., Pfiffner, S., Phelps, T., and Moortgat, J., "Impacts of Methane on Carbon Dioxide Storage in Brine Formations", Groundwater (2018), 56(2). doi:10.1111/gwat.12633.

Amooie, M.A., Soltanian, M.R., Xiong, F., Dai, Z., Moortgat, J., "Mixing and Spreading of Multiphase Fluids in Heterogeneous Bimodal Porous Media", Geomechanics and Geophysics for Geo-Energy and Geo-Resources (2017), 3(3), 225–244. doi:10.1007/s40948-017-0060-8.

Soltanian, M.R., Sun, A., Dai, Z., "Reactive Transport in a Complex Heterogeneous Alluvial Aquifer of Fortymile Wash, Nevada", Chemosphere (2017), 179, 379-386.

Soltanian, M.R., Amooie, M.A., Gershenzon, N., Dai, Z., Ritzi, R., Xiong F., Cole, D.R., and Moortgat, J., "Dissolution Trapping of Carbon Dioxide in Heterogeneous Aquifers", Environmental Science and Technology (2017), 51(13), 7732–7741. doi:10.1021/acs.est.7b01540.

Amooie, M.A., Soltanian, M.R., Moortgat, J., "Hydro-Thermodynamic Mixing of Fluids Across Phases in Porous Media". Geophysical Research Letters (2017), 44(8), 3624-3634. doi:10.1002/2016GL072491.