A Low-Frequency Electrode Array Tool for Fracture Diagnostics in Steel-Cased Wellbores

SBIR/DOE Grant No. DE-SC0015774

presented by
David A. Glowka
E-Spectrum Technologies, Inc.

U.S. Department of Energy
National Energy Technology Laboratory
Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting
August 13-16, 2018
Project Team

E-Spectrum Technologies, Inc.

- Dave Glowka – PI and mechanical design
- Jeff Gabelmann – electronic design
- Tom Haas – electronic design
- Mark Oerkfitz – software design
- John Weiblen – mechanical design

University of Texas at Austin

- Dr. Mukul Sharma – Tool modeling and data inversion
- Dr. Peng Zhang – Tool modeling and data inversion
- Javid Shiriyev – Tool modeling and data inversion
Presentation Outline

• Description of the Low-Frequency Electrode Array (LFEA) concept

• Results of the computational modeling of fractures interacting with electrically isolated and energized steel casing (The University of Texas at Austin)

• Description and status of the LFEA tool under development (E-Spectrum Technologies, Inc.)

• Accomplishments and challenges
Low-Frequency Electrode Array Fracture Diagnostics Concept
Low-Frequency Electrode Array
Fracture Diagnostics Concept
SBIR-DOE Phase II Project
- Technical Objectives -

• Develop a model for casing-excited fracture measurements

• Develop a fracture parametric inversion algorithm for cased holes

• Design, fabricate, and bench test the electronics, firmware, and mechanical components of the tool

• Deploy the complete LFEA system in a conductively propped well to validate the tool
Computer Modeling of a Steel-Cased Well
(Peng Zhang and Mukul Sharma, UT Petroleum Engineering Dept.)

Governing Equation
\[\nabla \cdot \left(\sigma(X) \nabla \phi(X) \right) = 0 \]

\[\iiint_V \nabla \cdot \left(\sigma_c \nabla \phi_c \right) \, dv = 0 \]

\[\iint_S \left(\sigma \nabla \phi \right) \cdot ds = \sum_{p=1}^{P} S_{f(p)} \cdot \left(\sigma_{f(p)} \nabla \phi_{f(p)} \right) = 0 \]

Finite difference

- Forward Simulation Technique -
Transmitter Voltage = 20 VDC (+/- 10 V)

Measured Voltage Before Fracture

Measured Voltage After Fracture

Absolute Difference

Fracture Radius 30 m
Effect of Single-Fracture Location

Transmitter Voltage = 20 VDC
(+/- 10 V)

Measured Voltage Before Fracture

Voltage Across Gap

Fracture Radius 30 m

Difference with Frac @ 5 m
Difference with Frac @ 14 m
Difference with Frac @ 23 m

Voltage

-36 m -27 m -18 m -9 m 0 m 9 m 18 m 27 m 36 m
Work Flow Diagram for the Inversion of Field Data

Minimize:

\[E(m_{inv}) = \sum_{i=1}^{n} \frac{[\Delta U_i(m_{inv}) - \Delta U_i(m_{true})]^2}{[\Delta U_i(m_{true})]^2} \]
UT’s MultiFrac-3D to predict hydraulic fracture propagation

Incorporating a Geomechanical Model to Constrain the Inverse Solution

UT’s MultiFrac-3D to predict hydraulic fracture propagation

Updated Model m_{inv}

VFSA

$m_{inv,final}$

Forward Simulation

Output

Input

$\Delta U_i(m_{true})$

$\{\Delta U_i(m_{inv})\}$
Inverse Model Predictions with 5% Gaussian Noise
ENODE Casing Coupling Design

Design completed and prototype currently under construction
EDRIVE Tool Configuration

CT Crossover at Top of Tool

Section 1

148-172"

Section 2

110-134"

Section 3

Battery Module (Transmitter Only)

240"

Modular design allows for multiple configurations.
Preferred configuration: 1 Transmitter/6 Receivers

4500 lb, 325 ft long

Section 1
+ Section 2 \times 7 + Section 1
+ Section 3

Transmitter/Controller or Receiver Module

Tool Gap

Bow Springs

Bull Nose @ Bottom
LFEA-Coiled Tubing Deployment Procedure

Use Lubricator and Blow-out-Preventer to deploy the tool into a well under pressure.
Developing a High-Power Transmitter

3.3 Times the Power
Interior Tool Design

Electronics Strongback Carrier

EDRIVE Controller Assembly

EDRIVE Transmitter Assembly

EDRIVE Power Section

EDRIVE Receiver Assembly
Accomplishments to Date

- Successfully developed a forward simulation model and an inversion technique that can be used to analyze the measurements taken by the LFEA tool
- Completed the design of the ENODE casing coupling and began construction of a prototype
- Completed a top-level mechanical design of the EDRIVE tool
- Confirmed general tool design and deployment technique with field experts
- Developed a transmitter module with more than 3 times the power output as a previous design
Lessons Learned

- **Unanticipated Research Difficulties:**
 Exploring the tool configuration and deployment options and selecting a configuration compatible with field practices required more time than anticipated.

- **Challenges:**
 - BHP (our original proposed field-test partner) sold all their US shale assets to BP last month.
 - Other field-test partners will be sought.
 - Full-scale surface testing of the prototype tool will provide the proof of concept we need to convince a well operator to participate in a field test.
Project Summary

- Project is on schedule.
- Computer modeling work indicates that data which could be acquired with the Low-Frequency Electrode Array tool is capable of yielding important information about hydraulic fractures extending from the wellbore.
- Work is underway to design and build a prototype LFEA tool.
- Seeking field testing opportunities.
Publications

Thank You

Questions
This project is developing a technique and a downhole tool for determining important hydraulic fracture characteristics, such as location, extent, and conductivity. The technology, when successfully demonstrated, will provide an understanding of hydraulic fracture propagation that is currently not available to the industry. This technology contributes to the Fossil Energy Program’s draft objective to catalyze the development and demonstration of new technologies and methodologies for limiting the environmental impacts of unconventional oil and natural gas development activities.
Synergy Opportunities

The fracture diagnostics technologies reviewed in this session are significantly different, but collaboration among projects could have a synergistic effect in the following areas:

- Downhole tool design – common design challenges could have common solutions
- Field validation – using more than one technique on a given well could yield additional data and insight
Project Overview

Goals and Objectives

- Develop a model for casing-excited fracture measurements
- Develop a fracture parametric inversion algorithm for cased holes
- Design, fabricate, and bench test the electronics, firmware, and mechanical components of the tool
- Deploy the complete LFEA system in a conductively propped well to validate the tool

These project objectives describe a tool-based path toward the DOE programmatic goal of advancing our ability to diagnose, quantify, and map hydraulic fractures for the purpose of limiting environmental impacts.

The metric for success is the development and field demonstration of a tool and software for acquiring and analyzing hydraulic fracture data.
A Low-Frequency Electrode Array Tool for Fracture Diagnostics in Steel-Cased Wellbores

Design Review Team

Mukul Sharma, RI PI

Research Institution, University of Texas at Austin

Mechanical Design Lead Engineer, J. Weiblin

Software Design Lead Engineer, M. Oerkfitz

Electronic Design Lead Engineer, T. Hosbach

Dave Glowka, PI, E-Spectrum Technologies

Programmatic

Informal
A Low-Frequency Electrode Array Tool for Fracture Diagnostics in Steel-Cased Wellbores