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Presentation Outline

• Technical Status
• Accomplishments
• Lesson Learned
• Synergistic Opportunities
• Summary [Repeat of Lessons Learned]



Technical Status & Methodology

Background
• Felt seismicity

– Stable versus unstable slip

• Mineralogical controls

• Geometric (stiffness) controls

• Seal breaching

– Evolution of permeability and capillary characteristics

Methodology
• Collect, Synthesize and Characterize Sedimentary Formation Samples (Fitts, Lead)

– Collect Homogeneous and Mineralogically Complex Sedimentary Rocks (Peters)

– Sinter Mineral Mixtures to Create Idealized Analogs of Sedimentary Rocks (Fitts)

– Conduct Baseline Characterization of Natural and Synthetic Caprocks (Fitts)

• Laboratory Experimentation (Elsworth, Lead)
– Evolution of Fault Rheology and Transport Parameters (Elsworth)

– 3D Imaging of fault contact area, fault geometry, and mineralogy & textures (Fitts)

• Modeling for Response and for Caprock Screening (Elsworth, Lead)
– Digital Rock Physics Modeling of Response (Elsworth)

– Caprock Screening Heuristics (Peters, Fitts) 
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Induced Seismicity

[Elsworth et al., Science, 2016]
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Seismic – Aseismic Transition
Full Spectrum of Slip Behaviors
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Nascent Friction-Stability-Permeability Relationships

Observations
• dk/k0 increases with increased 

brittleness (a-b)<0
• dk/k0 increases with increased frictional 

strength
• Roles of mineralogy and surface 

roughness?



v Seismicity-Permeability Linkages – Natural Samples
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Cyclic Permeability Evolution and Normal Deformation

Experimental Method
• Slide-hold-slide with saw cut Green River shale (2 mm slide – 12 hours hold)

• Strain gage measures fault normal deformation 

• Surface Profile measured by optical profilometry
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Cyclic Permeability Evolution and Normal Deformation

Result – Permeability Evolution
• Cyclic permeability evolution is apparent

• Strong permeability decline at initial shear-in

• Shear Permeability enhancement become more significant at later stage slips
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Cyclic Permeability Evolution and Normal Deformation

Result – Strain Gage Measurement
• Shear slips are associated with dilation but with one exceptional case – plot (c)

• Normal compaction is apparent during hold (without exception)

• Magnitude of cyclic compaction/dilation is ~1 micron
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Cyclic Permeability Evolution and Normal Deformation

Time Dependent Static Compaction
• Compaction approximately follows power law with power exponent ~0.2-0.4

• Compaction magnitude is a few microns (decreases during later stage holds)

• Magnitude of the mechanical and hydraulic  compaction are similar but not 

identical

· Δbs > Δbh for first hold and Δbh > Δbs for later hold
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Cyclic Permeability Evolution and Normal Deformation

Surface Profile Evolution
• Strong comminution and flattening observed

• Comminution effect is significantly reduced at 2nd shear

• Small scale roughness develops on planed surface
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Cyclic Permeability Evolution and Normal Deformation

Discussion – Hypothetical Compaction and Matedness
• Two 1mm planed surface are hypothetically compacted assuming:

– Mineral dissolution at real contact (pressure solution)

– Dissolution rates are equal on upper and lower surfaces

• Pre-slip compaction likely determines the following shear permeability evolution 
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Frictional-Stability-Permeability and Reaction

Experiments:

• Eagle Ford 
Shale

• Two fluids:
• pH 2.5
• pH 7.8

• xCT Imaging 
before and 
after flow
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Frictional-Stability-Permeability and Reaction

pH 2.5
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Stability-Permeability Relations in Composites/Mixtures 

Kohli & Zoback, 2013
Fang et al., 2015; 2016
Samuelson & Spier, 2012
Carpenter et al., 2015

Boulton et al., 2015
Giogetti et al., 2015
Moore & Lockner, 2011

Verberne, et al., 2010; 2014
Ikari, et al., 2011; 2015; Stesky, et al., 1974
Smith & Faulkner, 2010; Numelin et al., 2007
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2D Model Configuration

Linear Elastic
Contact Model

DEM model configuration as a symmetric 
simplification of a double direct shear 
apparatus: (a) uniform mixtures; (b) 
textured (layered) mixtures; inset on the 
right-hand-side shows the variation of 
quartz (orange) to talc (blue) 
content/relative layer thickness in 
uniform/layered mixtures.

Schematic of the contact model: the
friction coefficient of a local contact
starts to evolve upon a slip event
together with a difference between
global load point velocity and stored
global reference velocity friction will
reach a peak and continue to evolve to
its steady state if local slip persists
according to either velocity-
strengthening or velocity-weakening; if
slip halted before reaching steady
state, the friction coefficient will state
as-is; friction evolution of newly
formed contact will be reset and evolve
from the beginning (left to right).



3D Model 
Configuration

Rotation Resistant Contact Model

Model configuration represents 
one half of the double direct 
shear configuration (Mair & 
Marone, 1999). (a) Double direct 
shear configuration; (b) DEM 
model for homogeneous 
mixtures; (c) Layered/textured 
mixture.

(a) Contact model between 
two particles comprises linear 
elastic components in the local 
shear and normal directions 
with a moment-based rolling 
resistant component (k_r); (b) 
modified slip-weakening 
constitutive relation acting at 
each particle-particle contact. 



(a) Typical friction evolution curve of a uniform mixture of talc and quartz (0% talc and 100% 
talc are shown); (b) (a-b) of uniform mixture plotted against talc weight percentage, shaded 
area indicates trend; (c) (a-b) of layered mixture plotted against talc weight percentage, zoom-
in view shows a comparison of the weight scale with the uniform mixture, shaded area 
indicates increasing trend of (a-b)



Uncorrected/corrected evolution of sample layer thickness with shear displacement  for (a) a 
10% talc-quartz mixture; (b) a 90% talc-quartz mixture; (c) local normalized permeability 
evolution of 10% and 90% talc-quartz mixtures estimated from local porosity evolution; (d) 
evolution of average coordination number of 10% and 90% talc-quartz mixtures.



Accomplishments to Date
– VS and SHS Experiments

• Mechanisms-based seismicity-permeability evolution RSF-k
• VS experiments on broad suite of natural and artificial samples
• Stability-permeability relations (indicate larger stability smaller dk) 
• Important role of healing on perm-cycle and seismicity defined
• Important role of reactive transport on perm-evolution and friction/stability

– Imaging
• Frozen post-test fractures 
• Completed imaging and segmentation of sheared fractures

– Modeling
• DRP models for friction and stability – gouge - compared with mixtures data

– Enables testing of laboratory data for stability and permeability
• Developed RT models for stiffness and permeability evolution of fractures

24



Lessons Learned/Summary
– Friction-Stability-Healing Behavior – Related to Permeability

• RSF-k is a viable method to link permeability-response 
– Linkage correct when strength to stress ratio is high
– Linkage incorrect where wear products predominate response

• Stability-permeability relations (indicate increasing stability -> smaller dk) 
• Friction-instability follows observed norms on mineralogy

– Quartz – predominantly unstable – permeability increase
– Carbonates and Clays – predominantly stable – permeability decrease

• Important role of healing on perm-cycle and seismicity defined
– Short hold times/repose then compactive deformation and small permeability increase or drop
– Long hold times/repose then dilation and increased permeability increase

• Important role of reactive transport on perm-evolution in fracture walls
– High porosity zone in Eagle Ford shale where carbonate leached

» But compaction and reactivation results in collapse and loss of permeability
– Mineralogic transformation Hematite-> Goethite results in changes in stability and permeability (conforms)

– Modeling
• DRP models for friction and stability – gouge - compared with mixtures data

– Local contact models confirm laboratory data for stability and permeability

25



Synergistic Opportunities
– TILT.princeton.edu
– Linkages with:

• Explored broad suite of mineralogies that 
are applicable to various CO2
demonstration projects and others

• Projects exploring field scale response -
URLs and field experimentation 
(Guglielmi, Aix-Marseille & LBNL)

– Seismicity-permeability correlations 
– Linkages across scales for upscaling
– LSBB (Carbonate), Tournemire

(Shale), Mt Terri (Shale)
– EGS Collab

• Imaging in vivo (Dustin Crandall)
26



Lessons Learned/Summary [Repeated]
– Friction-Stability-Healing Behavior – Related to Permeability

• RSF-k is a viable method to link permeability-response 
– Linkage correct when strength to stress ratio is high
– Linkage incorrect where wear products predominate response

• Stability-permeability relations (indicate increasing stability -> smaller dk) 
• Friction-instability follows observed norms on mineralogy

– Quartz – predominantly unstable – permeability increase
– Carbonates and Clays – predominantly stable – permeability decrease

• Important role of healing on perm-cycle and seismicity defined
– Short hold times/repose then compactive deformation and small permeability increase or drop
– Long hold times/repose then dilation and increased permeability increase

• Important role of reactive transport on perm-evolution in fracture walls
– High porosity zone in Eagle Ford shale where carbonate leached

» But compaction and reactivation results in collapse and loss of permeability
– Mineralogic transformation Hematite-> Goethite results in changes in stability and permeability (conforms)

– Modeling
• DRP models for friction and stability – gouge - compared with mixtures data

– Local contact models confirm laboratory data for stability and permeability

27
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Benefit to the Program 
Addresses: 
Area of Interest 1, Geomechanical Research
…….to determine the constraints of whether seals transected by blind faults will 
fail seismically or aseismically when contacted by increased reservoir 
pressures including CO2 and the implications of this rupture on seal breaching 
and loss of inventory. 
Relevance to FOA (“in italics”)
This project will provide:
“improved understanding of geomechanical processes and impacts critical to 
scCO2 injection operations. 
This [project specifically] includes [and integrates]: theoretical studies, [and] 
laboratory, work to:
(a) evaluate and assess the probability of induced seismicity; 
(b) understand, characterize, and measure potential permeability changes from 
slip along existing faults; and 
(c) understand and assess the geomechanical behavior and effects of 
increased reservoir pressure on fractures, faults, and sealing formations.” 
This will include…….
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Project Overview:  
Goals and Objectives

Examine geophysical and mineralogical controls of caprocks on:
• Fault slip – Stable/unstable or aseismic/seismic
• Permeability evolution – Sense and magnitude
• Potential for seal breaching – Permeability and capillary behavior
Including:
• Nature, form and rates of weakening that condition whether fractures and 

faults fail either seismically or aseismically
• Nature, form and rates of healing that define whether fractures may 

strengthen and then re-fail on multiple successive occasions, and 
• Permeability evolution (enhancement or destruction) that is driven on 

fractures as a consequence of these behaviors
• Feedbacks on healing conditioned both by physical and chemical 

transformations and the redistribution of mineral mass driven by fluid 
transport.   
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Organization Chart/ Communication Plan

Communication plan: Biweekly Skype [Oct 23; Nov 6, ….]
Biannual meeting
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Gantt Chart
SCHEDULE of TASKS and MILESTONES

PI Y1Q1 Y1Q2 Y1Q3 Y1Q4 Y2Q1 Y2Q2 Y2Q3 Y2Q4 Y3Q1 Y3Q2 Y3Q3 Y3Q4
O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S

Elsw orth

Fitts
sedimentary formation samples
SubTask 2.1 – Collect Homogeneous and Mineralogically Peters
Complex Sedimentary Rocks 
SubTask 2.2 – Sinter Mineral Mixtures to Create(Fitts) Fitts
 Idealized Analogs of Sedimentary Rocks 
SubTask 2.3 – Conduct Baseline Characterization of Fitts
Natural and Synthetic Caprocks (Fitts)

Elsw orth
Subtask 3.1 -- Evolution of Fault Rheology Elsw orth
and Transport Parameters 
Subtask 3.2 -- 3D Imaging of fault contact area, fault Fitts
geometry, and mineralogy & textures 

Elsw orth
Subtask 4.1 -- Digital rock physics of response Elsw orth
Subtask 4.2 -- Caprock screening heuristics Peters/Fitts

BP1 Oct 2014 to Sept 2015 BP2 Oct 2015 to Sept 2016 BP3 Oct 2016 to Sept 2017

Task 1 -- Project management and planning

Task 2 -- Collect, synthesize and characterize 

Task 3 -- Laboratory Experimentation

Task 4 -- Modeling for Response and Caprock 
Screening
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