Fundamental Reservoir Properties for High Priority Depositional Environments Targeted for CO₂ Storage

Dustin Crandall

US DOE NETL, Research and Innovation Center

U.S. Department of Energy

National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 13-16, 2018

Tuesday, August 14th 1:50 PM

Presentation Outline

- Title is representative of the entire task, but we're going to focus on a single subtask here.
 - For detail in subtasks, please see Gannt charts or ask about it later (there is good stuff there!)
- Relative permeability measurements of scCO₂ in depositional environments identified as primary targets for carbon storage
 - Motivation
 - Methodology
 - Results to date

Motivation

- CO₂ storage resource estimates for saline formations can be calculated with G_{CO2} (Goodman et al 2016).
- The CO₂ storage efficiency factor (E_{saline}) incorporates geologic and displacement terms to characterize the ability of CO₂ to utilize the formation.
- The volumetric (E_V) and microscopic (E_d) displacement terms are impacted by the relative permeability of the injection site.

$$G_{CO_2} = A_t h_g \theta_{tot} \rho E_{saline}$$
$$E_{saline} = E_A E_h E_{\phi} E_V E_d$$

Motivation – Depositional Environments

- Gorecki et al (2009) calculated P₁₀/P₉₀ efficiency ranges for various depositional environments.
 - But limited information on the scCO₂/brine k_r curves were available to perform this analysis.
- Experiments are being performed to expand this data set.

Lithology	Depositional Environment
Clastics	Clastics
Dolomite	Dolomite
Limestone	Limestone
Clastics	Alluvial fan
Clastics	Delta
Clastics	Eolian
Clastics	Fluvial
Clastics	Peritidal
Clastics	Shallow shelf
Clastics	Shelf
Clastics	Slope basin
Clastics	Strand plain
Limestone	Peritidal
Limestone	Reef
Limestone	Shallow shelf

EERC

IEA, 2009/13. Development of Storage Coefficients for CO2 Storage in Deep Saline Formations, IEA Green house Gas R&D Programme (IEA GHG) October.

Energy & Environmental Research Center

Motivation – Depositional Environments

DENERGY COL ON

CARBON UTILIZATION AND STORAGE

Notes:

The number in the cell is the number of investigations by NETL per geologic storage formation classification. * Potential reservoirs were inferred from petroleum industry and field data from the Carbon Storage Program.

^a Large-Scale Field Projects – Injection of more than 1,000,000 tons of CO₂.

^b Small-Scale Field Projects – Injection of less than 500,000 tons of CO₂ for EOR and 100,000 tons for saline formations.

Methodology

- Unsteady state scCO₂ injections into brine saturated cores
- 6" L, 2" D cores
- P_p = 1400 psi (9.6 MPa)
- P_{conf} = 2000 psi (13.8 MPa)
- T = 140°F (60°C)
- 0.2 < Q < 6 ^{ml}/_{min}

Recent CO₂ flood in Navajo sandstone

- Data collection
 - Baseline core properties (ϕ , k, pore volume)
 - Baseline CO₂ and brine saturated CT scans
 - Dynamic measurements
 - Differential pressure, injected CO₂ volume, saturation (via CT scans)
- Used methods set forth by Krevor et al (2012) for saturation and Toth et al (2002) for mobility functions & k_r calculations

16

- 27 tests completed, 10 with multiple flow rates
 - Detailed sample information collected and to be reported with saturation and relative permeability results.
 - All samples curated with International Geo Sample
 Number (ISGN) with the System for Earth Sample
 Registration (SESAR) www.geosamples.org

IGSN: IGSN: Sample Na Other Nam Sample Ty Parent IGS	IENTL0100 ime: White Rim Sandstone ke(s): pe: Core Whole Round NN: Not Provided							
Description								
Material:	Rock							
Classification:	Sedimentary							
Field Name:	White Rim Sandstone Member of the Permian Cutler Formation							
Description:	Sandstone, three types of eolian deposits: dune, interdune, and sabkha; surface							
Age (min):	Not Provided							
Age (max):	Not Provided							
Collection Method:	Drilling							
Collection Method Description:	Not Provided							
Size:	2 inch							
Geological Age:	Not Provided							
Geological Unit:	Not Provided							
Comment:	Not Provided							
Purpose:	ongoing test for the relative permeability atlas							
Geolocation								
Latitude (WGS84):	Not Provided							
Longitude (WGS84):	Not Provided							
Northing (m) (UTM NAD83):	Not Provided							
Easting (m) (UTM NAD83):	Not Provided							
Zone:	Not Provided							
Vertical Datum:	Not Provided							
Elevation:	Not Provided							
Nav Type:	Not Provided							
Physiographic Feature:	Not Provided							
Name Of Physiographic Feature:	Not Provided							
Location Description:	Not Provided							
Locality:	Utah							
Locality Description:	Not Provided							
Country:	United States							
State/Province:	Utah							
County:	Not Provided							
City:	Not Provided							
Collection								
Field Program/Cruise:	Not Provided							

Go Back

IGSN: IENTL0100

В	с	D	E	F	G	Н	1	J	К	L	м	N	0	Р		
Formation or Age	Location	Lithology and Properties	Depositional Environment	Depth/Outcrop	Permeability - lab determined	Porosity- lab determined	UCS (PSI)- lab determined	Homogeneous	Success	Subsampled for Contact Angles	Acquired	Current Location ISGN Number		Acquired Current ISGN Number		ISGN Link
Upper Devonian, Kipton	Clevand Quarries, Ohio	sandstone	strand plain, barrier bar		85.2 +/- 19.2*			Yes	l failed		Clevand Quarries	NETL MGN	IENTL00ZQ	https://app.geosamples.org/sample/igsn/IENTL002Q		
Lower Cretaceous, Edwards Plateau	Big Spring Texas Quarry	Carbonate	reef	100 feet	150-350 mD	33-35%	3000-35000	No	l success	No	Kocurek Industries	NETL MGN	IENTL00ZR	https://app.geosamples.org/sample/igsn/IENTL00ZR		
Upper Devonian, Kipton	Clevand Quarries, Ohio	sandstone	strand plain, barrier bar		85.2 +/- 19.2*			Yes	l success	Yes	Clevand Quarries	NETL MGN	IENTL00ZS	https://app.geosamples.org/sample/igsn/IENTLOOZS		
Late Cretaceous, Mesaverde	Rangely Colorado Quarry	sandstone	Deltaic complex fluvial	surface outcrop	800-1200 mD	27-29%	2000-2500	Yes	l success	attemped but fell apart	Kocurek Industries	Debris at NETL MGN, new piece sent to FIRE	IENTL00ZT	https://app.geosamples.org/sample/igsn/IENTL00ZT		
Triassic, Glen Canyon Group	an Rafael area of central Utah, 3	sandstone	Aeolian	surface outcrop	41.2 +/- 2.4 mD*				1 success	Yes	Eric Edelman, U of U	Used up	IENTL00ZU	https://app.geosamples.org/sample/igsn/IENTL00ZU		
Desmoinesian, Kansas	Readfield Kansas Quarry	sandstone	Marginal Marine	20-50 feet	30-45 mD	21-23%	4000-5000	No	l success	Yes	Kocurek Industries	NETL MGN, subsampled and sent to FIRE	IENTL00ZV	https://app.geosamples.org/sample/igsn/IENTL002V		
Upper Cretaceous, Edwards Plateau	Georgetown Texas Quarry	Limestone	shallow marine	30-60 feet	8-15 mD	22-27%	2000-3600	No	l success	No	Kocurek Industries	NETL MGN	IENTL00ZW	https://app.geosamples.org/sample/igsn/IENTL002W		
Paleozoic, Edwards Plateau B	Big Spring Texas Quarry	Carbonate		30-60 feet	1-3 mD	16-18%	5000-7000	Yes	l success	No	Kocurek Industries	NETL MGN	IENTL00ZX	https://app.geosamples.org/sample/igsn/IENTL002X		
9 Silurian	Thornton Quarry Indiana	Dolomite	reef	200 feet	35-100mD	16-17%	10,000-12,000	No	l success	No	Kocurek Industries	NETL MGN	IENTL00ZY	https://app.geosamples.org/sample/igsn/IENTL00ZY		
D Silurian	New York	Dolomite	reef	surface outcrop	2-10mD	9-10%	9000-12000	No	l failed	No	Kocurek Industries	NETL MGN	IENTL00ZZ	https://app.geosamples.org/sample/igsn/IENTL0022		
Vhite Rim Sandstone Member of the Permian Cutler Formatic	38°58'06.3"N, 110°39'43.3"W	sandstone	three types of eolian deposits: dune, interdune.	surface outcrop	less than 10mD				l success	No	Eric Edelman, U of U	NETL MGN	IENTL0100	https://app.geosamples.org/sample/igsn/IENTL0100		
2 Pleistocene-Holocene Big Pine volcanic field	Big Pine, CA from the northe	Igneous - volcanic	voleanie	surface outcrop					l success	No						
р 4	Salt Lake City Utah	Shale Shale		surface outcrop					1 tailed		Kocurek Industries	NETL MGN				
+	Languy Texas	onale et at		surrace outerop					1 121100		Kocutek Industries	NETL MGN				

• Example results from Castlegate sandstone tests: deltaic to fluvial

• Example results from Castlegate sandstone tests: deltaic to fluvial

• Example results from Edwards Yellow tests: Carbonate

21

• Example results from Edwards Yellow tests: Carbonate

22

Wormhole Generation

- Edwards Yellow (Carbonate)
- $Q = 6, 4, 2, 1 \text{ ml}/_{\min}$
- Wormhole generation near to the inlet evolved over sequential CO₂ injections.

Compare/Contrast Results across Cores

- Sandstones are relatively uniform in the relationship between k_r and k
- Carbonates are dependent on the material sensitivity and initial permeability
 - Dolostones tend to be less prone to secondary macro-porosity development and short-circuiting of fluid. They tend to behave more predictably like sandstone.
 - Limestones (pure CaCO₃) tend to wormhole significantly, which causes dynamic changes in the relationship between k and k_r during the flow test

Accomplishments to Date

- 27 experiments completed.
 - Most depositional environments run with multiple cores.
- Only three depositional environments remain to be tested.
 - Lacustrine, alluvial and turbidite.
- Draft manuscript on methodology almost complete.
 - Introduction needs refining.
- Draft database for EDX created and populated.

	PermeabilityDBDraft13-21-18: Database- C:\Users\Crai	sktop\/Pe	
File Home Create Extern	nal Data Database Tools Q Tell me what you want to do		
View Paste F	Ascending T Selection Image: Selec	 PermesbilityO8Draft 13-21-18: Database Home Create External Data Database Tools Q Tell me what you want to do 	se-C/Users/Crandald/Desktop/PermeabilityDBDraft13-21-18/Perm
Format Painter Views Clipboard G All Access Obie	Sort & Filter All - X. Delete III: More Sort & Filter Records QuerySearchForm SearchResult	v Pate Several Business Several Computer Several Seve	Totals Ordels Optimize Specified Totals Optimize Specified Totals Specified
Search	Q	s Clipbonar s Sort & fille Records Access Obje ⊙ « I QuerSearchForm I SearchResult II Q2 Chart III Q4 C	Chart Grant All Access of the sectors of the s
Header QAII	Rock Type v Porosity > 0	A P SearchResult	CO2 Eq.(27) K
QAllbak Scan Rubric	Porosity < 1	Header 0.46013242633	2.77837581079
Q1Chart Q2Chart	Clear Form Search Open Graph	QAlbak Scan Rubric eries	144829 2.76301100417 S Cover S Gover S Gover S Gover
ाव्य .03Chart		Q2 0.4579766491 Q2Chart 0.4579766491	114869 2.74753881419 5 trans 5 transfit 114869 2.74753881419 5 transfit 114869 2.74753881419 5 transfit 114869 1.7754541464199 1.1149 114869 1.775441464199 1.1149 114869 1.7754444199 1.1149 114869 1.7754444199 1.1149 114869 1.77544444199 1.1149 114869 1.77544444199 1.1149 114869 1.77544444199 1.1149 114869 1.77544444199 1.1149 114869 1.77544444199 1.1149 114869 1.77544444199 1.1149 114869 1.7754444419 114869 1.7754444419 114869 1.7754444419 114869 1.7754444419 114869 1.7754444419 114869 1.7754444419 114869 1.7754444419 114869 1.7754444449 114869 1.7754444449 114869 1.7754444449 114869 1.7754444449 114869 1.7754444449 114869 1.7754444449 114869 1.7754444449 114869 1.7754444449 114869 1.7754444449 114869 1.77544444444444444444444444444444444444
		03(hart Q2 0.49813650148	81005 2./501110133 Storether Repets Protocol Control

Lessons Learned

- Core scale heterogeneity obviously an issue.
- Low potential/uncertain reservoir systems difficult to determine k_r
 - Low permeability: not surprising
- Dynamic carbonate evolution is able to be captured with unsteady k_r measurements
 - Quantification of k_r difficult (Vp is changing ...)
 - We have been able to characterize this impact on k_r, and observed interesting behavior with respect to k and dissolution behavior. Early results, but planning to submit manuscript late '18 or early '19.

Synergy Opportunities

We are very happy to utilize the skills and resources at NETL RIC to further the mission(s) of FE across portfolios. The number of ongoing collaborative studies is numerous, and if you identify places where we can help with your studies, please let me know.

Project Summary

- Key Findings
 - Dynamic carbonate evolution captured with unsteady $k_{\rm r}$ measurements
 - We have developed a methodology for correcting for these changes.
 - We have been able to do a depositional environment, to completion, at a rate of 1 per 1-2 weeks.
- Next Steps
 - Submission of methods manuscript.
 - Completion of depositional environment experiments.
 - Finalization of database and publication to EDX.
 - Manuscript generation for dataset highlighting variation.

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program

• To improve assessments of CO₂ storage for key reservoir classes, basic research of critical properties at in situ conditions and linked to potential reservoir classes needs to be conducted. Work will focus on measuring relative permeability, residual saturation, and wettability for high priority depositional environments targeted for CO₂ storage and developing accessible tools for reservoir modelers to access this data and utilize to reduce uncertainty in their estimates.

Project Overview

Goals and Objectives

- Determination of non-rock specific relative permeability curves to reservoir scale assessments of CO_2 migration results in higher levels of uncertainty than could be attained with more targeted models. By developing a set of relative permeability curves, and understanding how they vary with different depositional environments, the benefit of this task will be reduced uncertainty in CO_2 migration in real world reservoirs.
 - Success is development and publication of an accessible database of experimentally determined relative permeability curves of scCO₂/brine through various high priority depositional environments.

Project Overview

Brief highlights of additional subtask 13.1.2

• Improved brine-CO₂ understanding in reservoirs, from pores to flow properties.

Measurement of $scCO_2$ /brine contact angles in pore space

Brine

CO₂

Organization Chart

- NETL Researchers: Johnathan Moore, Sarah Brown, Laura Dalton, Karl Jarvis, Bryan Tennant, Scott Workman, Aaron Boylan, Magdalena Gill, Jeong Choi, Michael Sabbatino, Leebyn Chong, Eugene Myshakin, Angela Goodman, Sean Sanguinito, Deepak Tapriyal, Foad Haeri, Fan Shi, Christopher Matranga, Greggory Breault, Samantha Fuchs, Paige Mackey, Thomas Paronish,
- ORISE Faculty: Cheng Chen (Virginia Tech), Goodarz Ahmadi (Clarkson University), Kevin Shanley (SUNY New Paltz), Brian Ellis (U of Michigan)

Gantt Chart – Task Overview

Go / No-Go

Timeframe

Project

Completion

Timeline Overview – Sub-Task 13.1.3

Contact Angle Measurements

2017 Research Activities		2017		20	18			20	19		2020			
		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Subtask 13.1.3 – Contact Angle Measurements	2	$\langle \hat{\mathbf{x}} \rangle$	4	\rangle			4>			\$	3			

Milestones

- 1. Bring reactor cell online to measure contact angle of scCO₂/brine on various substrates at reservoir conditions. (Completed -2017)
- 2. Minimalization of contaminant sources in sessile drop chamber to reduce surface chemistry disruptions in measurements. (April 2018)
- 3. Report on results from CO₂ flooding tests along with comparison and contrasting results to contact angle measurements performed in the umCT scanner. (September 2018)
- 4. Complete shakedown of reactor cell and perform 6 in situ contact angle measurements on a synthetic mineral substrate (e.g., SiO2) to illustrate the performance of this new capability. (December 2018)
- 5. A written report and slide deck summarizing the design shakedown and operation of the cell with analysis of how this approach can be used to correlate surface chemistry, surface composition, and surface roughness with wettability and relative permeability. (December 2019)

Go / No-Go

3/29/19 - Assess the utility of in situ contact angle measurements to provide quantitative insight into wettability and relative permeability changes during scCO₂/brine exposures. If these measurements are able to quantify and correlate surface chemistry changes, surface composition, and surface roughness with wettability and relative permeability continue the contact angle measurements at conditions that mimic those in the CT laboratory (Go Decision). If these measurements are unable to provide this insight, closeout the contact angle measurements (No-Go Decision)

Completion

Timeframe

Key Accomplishments/Deliverables	Value Delivered
<u>2016-2017</u> : Sessile drop measurement device, capable of operating at reservoir temperature and pressure, made operational. Upon examination, several potential containments in the system have been identified. These are likely ubiquitous in all published literature on this topic, and their impact on contact angle is being assessed.	 An improved understanding of the influence of surface chemistry changes, surface composition, and surface roughness on the contact angle between scCO₂ and brine on natural rock surfaces will improve estimates of transport and trapping of CO₂ in geologic repositories.
	TRLScore Transformer Chart Key

Impact

If these can be readily produced and used to measure saturations, then
relative permeability curves of fluids through fractures can be developed
that will improve large scale simulations of flow through fractured
reservoirs and seals.

TRL Score

Chart Kev

Project

Completion

Go / No-Go

Timeframe

6

Milesano

scanning resolution were both guite coarse. Working with Mickey Leland

lower cost and higher resolution than previous efforts.

Energy Fellows and reprocessing of old CT scanned images of fractures a new model was created last year that enables basic tests to be run, with much

Bibliography

- List peer reviewed publications generated from the project per the format of the examples below.
- Publications for subtask 13.1.1 (focus of this talk) are in the draft preparation stage.
- Journal, one author:
 - Gaus, I., 2010, Role and impact of CO₂-rock interactions during CO₂ storage in sedimentary rocks: International Journal of Greenhouse Gas Control, v. 4, p. 73-89, available at: XXXXXX.com.
- Journal, multiple authors:
 - MacQuarrie, K., and Mayer, K.U., 2005, Reactive transport modeling in fractured rock: A stateof-the-science review. Earth Science Reviews, v. 72, p. 189-227, available at: XXXXXX.com.
- <u>Publication</u>:
 - Bethke, C.M., 1996, Geochemical reaction modeling, concepts and applications: New York, Oxford University Press, 397 p.