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Presentation Outline

Research Theme: Shales, Characterizing Interactions of CO2
with Shale for Potential Storage Needs and Seal Integrity 
• Task 17.0 CO2-Shale Interactions- Macroscopic
• Team Members: Johnathan Moore, Sarah Brown, Ernest Lindner, Michael Hannon, Yael Tucker, 

Leebyn Chong, Eugene Myshakin, Guanyi Lu, Andrew Bunger, Dustin Crandall

• Task 18.0 CO2-Shale Interactions- Microscopic
• Team Members: Angela Goodman, Sean Sanguinito, Barbara Kutchko, Jeff Culp, Mary Tkach, Sittichai

Natesakhawat, Dustin Crandall, Patricia Madden 



Task 17.0 CO2-Shale Interactions- Macroscopic

• Over 350 pages of detailed reviews and over 300 references

• Lindner, E. N. Review of the Effects of CO2 on Very-Fine-Grained 
Sedimentary Rock/Shale – Part III: Shale Response to CO2; NETL-
TRS-11-2017; NETL Technical Report Series; U.S. Department of 
Energy, National Energy Technology Laboratory: Morgantown, WV, 
2017; p 228.

• Lindner, E. N. Review of the Effects of CO2 on Very-Fine-Grained 
Sedimentary Rock/Shale – Part II: Clay Mineral & Shale Response 
to Hydration; NETL-TRS-10-2016; NETL Technical Report Series; 
U.S. Department of Energy, National Energy Technology Laboratory: 
Morgantown, WV, 2016; p 68.

• Lindner, E. N. Review of the Effects of CO2 on Very-Fine-Grained 
Sedimentary Rock/Shale – Part I: Problem Definition; NETL-TRS-1-
2016; NETL Technical Report Series; U.S. Department of Energy, 
National Energy Technology Laboratory: Morgantown, WV, 2016; p 68. 
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Shale Response to CO2 Literature Review



Task 17.0 CO2-Shale Interactions- Macroscopic

Shale swelling due to CO2
– Inconclusive experiments have led to MD simulations
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Representation of the clay/CH4/CO2 system. The color coding of atoms is purple, red, 
white, gray, yellow, pink, and green for K, O, H, C, Si, Al, and Mg, respectively. 
Chong, L., Myshakin, E.M. (2018) Molecular simulations of competitive adsorption of carbon dioxide
– methane mixture on illitic clay surfaces, Fluid Phase Equilibria, Vol 472, 2018

Bakken Shale

Hour bVideal (mm) bH (mm)
0 102.01 15.63

24 75.15 13.71

72 81.83

120 12.94

216 62.94 12.91

240 72.49 11.86

264 10.51

290 8.45

384 57.34 8.50



Task 17.0 CO2-Shale Interactions- Macroscopic

Full Immersion 
Pressure Pulse Decay
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• Apply pressure disturbance 
to entire outer surface area.

• Assume uniform but distinct 
permeabilities in radial and 
axial directions.

• Numerical simulation to 
predict pressure response

• Experimental tests have 
shown excellent agreement 
with traditional 
measurements. 

• Simultaneously determine 
both permeabilities from a 
single test!

�𝑝𝑝0 = 491.6 psia, �𝑝𝑝𝑝𝑝 = 536.5 psia, �ϕ= 8.5%,
�𝑘𝑘𝑟𝑟 =  215.8 nd, �𝑘𝑘𝑥𝑥 =  126.6 nd 

Permeabilities ~ 100s of nD
Tests complete in 5-20 minutes!



Task 17.0 CO2-Shale Interactions- Macroscopic

• The goal of the proposed research is to 
observe and quantify the impact of 
stress corrosion on shale permeability. 

• Stress corrosion is the time dependent 
failure due to stresses that are insufficient 
to instantaneously break the rock. 

• Development of a coupled numerical 
model to account for this behavior, 
benchmarked on experimental 
observations, will enable greater seal 
characterization for long term stress 
behavior of shale sealing formations.

• Just started experiments in July.
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Stress Corrosion in Shales

From Winner, R.A,, Lu, G., Prioul, R., Aidagulov, G., Bunger, A.P. (2018) Acoustic emission and kinetic fracture theory for time-dependent breakage of granite,
Engineering Fracture Mechanics, v 199, doi.org/10.1016/j.engfracmech.2018.05.004.



Task 18 - CO2-Shale Interactions- Microscopic

• Objective: Quantify CO2 interactions with 
shale at the nano- and micro-scale and 
provide quantitative inputs at the macro-scale 
to understand flow properties and inputs for 
reservoir simulations of large-scale storage 
activities in shale. 
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Task Technical Approach and Project Relevancy 
J.A. Chermak, M.E. Schreiber  
International Journal of Coal 
Geology 126 (2014) 32–44

• Method: Examining petrophysical characteristics including reaction 
mechanism, precipitation, dissolution, surface area, porosity, permeability, 
and mineralogy of the host formation

• Question: How does CO2 interact with fracturing 
fluid and shale for storage, as an alternative 
fracturing agent, and as an EOR agent?
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• Infrared frequencies consistent with weak 
electrostatic interactions between CO2 and Shale, 
Kerogen or Clays interface

• CO2 sorption in micro-porosity of organic fraction 
and internal layers and surfaces of clay minerals

Results: Infrared Spectroscopy of the CO2-Shale Interface 
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• Infrared frequencies consistent with CO2 dissolution in 
water in high pressure geological storage conditions 

• CO2 not interacting with Shale, Kerogen or Clays

Results: Infrared Spectroscopy of the CO2-Fluid-Shale Interface

 

Sample Infrared Frequency 
(cm-1) Wet 

Spectral Assignment 

Marcellus Shale: Oatka Creek 
Member 

2342 CO2 dissolution  

Marcellus Shale: Union Springs 
Member 

2342 CO2 dissolution 

Utica Shale: Flat Creek Member 2342 CO2 dissolution 

Illite-Smectite 2342 CO2 dissolution 
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Extracted kerogen from the New 
Albany Shale 

2342 CO2 dissolution 
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Results: Infrared Spectroscopy of Changes in Carbonate Chemistry
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• Long-term effects of carbon dioxide and fluid remaining in the subsurface
• Changes in porosity are observed after reaction with CO2 and fluid

BEFORE AFTER with CO2
AFTER with CO2 and Fluid

Potential to alter flow pathways and impact hydrocarbon production

Mineral dissolution and etching was 
observed 

Results: Scanning Electron Microscopy of Utica Shale
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• Micropore surface area 
and volume decreased 
significantly after CO2
exposure, possibly altering 
overall permeability and 
fracture networks

Results: BET surface area and pore size analysis of Utica Shale 
 Unexposed CO2-exposed Wet CO2-exposed

Sample amount (g) 0.3030 0.3042 0.3091
BET surface area (m2/g) 6.8 6.3 5.7

Micropore surface area (m2/g) 1.4 0.4 0.0
Micropore volume from N2-77K (cm3/g) 0.00071 0.00030 0.00000

Ultramicropore volume from CO2-273K (cm3/g) 0.00127 0.00141 0.00127
Total micropore volume (cm3/g) 0.00197 0.00171 0.00127

Mesopore volume (cm3/g) 0.01177 0.01239 0.01539
Fitting error for N2-77K (%) 0.570 0.978 1.553

Fitting error for CO2-273K (%) 0.179 0.257 0.255
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• Isotherms are similar to the BET 
isotherms

• Filling of micro-pores at low pressure 
followed by meso-pores 

– Sharp initial uptake of ~ 1 cm3/g CO2 in the 
lower P/P0 range of the isotherm followed by 
a shallow positive slope over the remainder 
of the isotherm.

• Individual components show greater 
uptake than shale 

– Constituents inaccessible even when finely 
ground?

• Significant uptake of CO2 by kerogen
– Higher fraction of micropores favorable for 

CO2 interaction

Results: Quantitative CO2 Adsorption isotherms for Utica Shale

Kerogen

Utica Shale

Illite-Smectite



Accomplishments to Date

– Task 17.0 CO2-Shale Interactions- Macroscopic
• Publication of detailed literature review of CO2/shale interactions to guide future research.
• Fundamental understanding of swelling behavior examined from MD simulations and laboratory 

experiments. 
• Development of faster techniques to measure permeability of low permeability shales.
• Examine and upscale pressure corrosion relationships relevant to shales as CO2 seals. 

– Task 18.0 CO2-Shale Interactions- Microscopic
• Quantified interactions between CO2, and fluid with Utica and Marcellus Shale.

(Sanguinito et al, Quantifying dry supercritical CO2-induced changes of the Utica Shale, Fuel, 2018, 54-64)
• Beginning measurements to understand changes in dynamic conditions.

14



Lessons Learned
– Some take away points from the literature review –

1 – Mineralogy of shale/mudstone is critical to understanding interactions with CO2. Clay content, clay type and organic 
content should be measured when testing.
2 – Chemical interactions vary with time and occur over long-durations. We’re not doing a good job on long term testing in 
the laboratory.
3 – Water content influences sorption and swell. Laboratory content and in-situ content should be understood to provide 
context to presented results.
4 – Micro-fabric of shale influences and controls CO2 reactions. Laboratory testing will always incur some disturbance; 
understanding and minimizing this is important.
5 – Lab-scale swell tests with CO2 indicate minor deformation (a couple of percent), but clay mineral layer spacing swell is 
shown up to 60%. More work linking these scales is required over longer exposure periods.
6 – CO2 sorption in shales does not follow typical Langmuir or BET isotherms at higher pressures (>5 MPa). Increased 
sorption up to pressures ~ 7 MPa, but decreases substantially after ~10 MPa. 
7 – Fracture dynamics with CO2 complex and poorly understood. Channeling, dissolution, and the impact of surface 
alteration affect flow properties. Flow velocity and exposure duration play an important role in this response.
8 – Near-well vs. far-field environments drastically different. Dry out may occur near to injection point and induce 
shrinkage. Carbonic acid far-field will dominate reactions. Chemical interactions need field studies to identify these 
boundaries.  

15



Synergy Opportunities

Task 18.0 CO2-Shale Interactions- Microscopic
Pursuing SANS/USANS measurements with NIST to further probe pore changes 

at the micro and nano scale
16

We are very happy to utilize the skills and resources at NETL RIC to further the mission(s) of FE 
across portfolios. The number of ongoing collaborative studies is numerous, and if you identify 

places where we can help with your studies, please let us know. 



Project Summary

Task 17.0 CO2-Shale Interactions- Macroscopic
• Comprehensive literature review of CO2/shale interactions published.
• MD determined excess adsorption isotherms for single-component carbon dioxide 

and methane show that carbon dioxide demonstrates greater affinity to the illite 
surface. 

Task 18.0 CO2-Shale Interactions- Microscopic
• Changes in pores are occurring on the micron (opening) and nano (closing) scale 

after reaction with CO2 and fluid
• Further investigate pore changes to understand possible alteration of overall 

permeability and fracture networks
17



Appendix
– These slides will not be discussed during the presentation, but 

are mandatory.
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Benefit to the Program 
Task 17.0 CO2-Shale Interactions- Macroscopic
• Carbon Storage Program Major Goals

• Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
• Support industry’s ability to predict CO2 storage capacity in geologic formations to within ±30 percent.

• Project Benefits Statement:
• Publication of detailed literature review of CO2/shale interactions to guide future research.
• Fundamental understanding of swelling behavior examined from MD simulations and laboratory experiments. 
• Development of faster techniques to measure permeability of low k shales.
• Examine and upscale pressure corrosion relationships relevant to shales as CO2 seals. 

Task 18: CO2-Shale Interactions – Microscopic
• Carbon Storage Program Major Goals

• Develop and validate technologies to ensure for 99 percent storage permanence.
• Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
• Support industry’s ability to predict CO2 storage capacity in geologic formations to within ±30 percent.

• Project Benefits Statement:
• Determine how CO2 and fluid induced alterations of Marcellus, Utica, Mancos, Eagleford, and Barnett  shale affect flow pathways in terms of 

precipitation, dissolution, and pore space alteration.
• Identify key properties of shale formations (carbonate rich vs silicate rich) at the nano- and micro-scale needed for quantifying CO2 storage and seal 

activities.
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Project Overview  
Goals and Objectives

• Objective: The product of this work is to deliver a literature review of CO2/shale interactions and a novel full immersion pulse decay device 
that measures shale properties under stressed conditions. The objective of this task is to develop an understanding of the interaction of CO2 
with shale. Direct measurements of shale properties under stressed conditions and analysis of interactions of fractured shale with CO2 are the 
primary thrusts of this project. 

• Benefit: Shale formations are widespread throughout the United States and understanding how they could be properly used in a national 
storage strategy is important. Development of techniques to rapidly measure shale properties, identification of shale mineralogy that will 
interact poorly with CO2 and understanding of how shale could fracture under low consistent stresses will all directly benefit geologic CO2 
storage efforts.

• Challenges: Several R&D challenges exist for the development of CO2/shale interactions. As identified in a comprehensive literature review 
of CO2/shale interactions (Lindner 2017) there is wide variability in the reported behavior of shale and CO2. In part, a poorly defined 
understanding of what constitutes a shale is at fault; mineralogical content as opposed to organic content in the context of gas plays. Focusing 
efforts on fundamental mineralogical descriptions of shale instead of shale play names should alleviate this challenge. A second challenge is 
replication of subsurface conditions: (1) shale acquired from depth has been altered by the removal of stresses and fluids and (2) shale 
acquired from outcrops has undergone long term changes due to its uplift and exposure. By combining in situ conditions for laboratory testing 
and simulating subsurface environments best practices will be used to overcome these challenges. 

• Approach: Coupled experimental and numerical modeling of phenomena.

Task 17: CO2-Shale Interactions – Macroscopic
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Project Overview  
Goals and Objectives

• Objective: Quantify CO2 interactions with shale at the nano- and micro-scale and provide quantitative inputs at the macro-scale to understand 
flow properties and inputs for reservoir simulations of large-scale storage activities in shale. 

• Benefit: Reaction of CO2 with in situ fluids, fracturing fluids, and reactive shale interfaces may generate new reactive surfaces or intermediates 
that may alter the properties of the formation. A fundamental understanding of the reactivity of CO2 with shale and fluid interfaces will help in 
identifying how storage in shale formations plays a role in CCS activities.

• Challenges:
– Fundamental research examining the geochemical interactions of CO2 and fluids with shale is limited. 
– Limited understanding of how reaction of CO2 with in situ fluids, fracturing fluids, and reactive shale interfaces may generate new reactive 

surfaces or intermediates that may alter the properties of the formation. 
• Approach:

– Complete experimental analysis of CO2, fluid, and shale interactions at the nano- and micro-scale for a suite of shales suitable for 
potential CO2 storage activities. 

– Relate shale attributes to CO2 storage potential. 
– Scale results observed at the nano- and micro-scale to the macro-scale to understand flow properties and inputs for reservoir simulations 

of large-scale storage activities in shale.

• Task Technical Approach and Project Relevancy (PI: Angela Goodman)

Task 18: CO2-Shale Interactions – Microscopic



Organization Chart
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Research Theme: Shales: Characterizing Interactions of CO2 with Shale for Potential Storage 
Needs and Seal Integrity 

• Task 17.0 CO2-Shale Interactions- Macroscopic
Team Members: Johnathan Moore, Sarah Brown, Ernest Lindner, Michael Hannon, Yael Tucker, Leebyn 
Chong, Eugene Myshakin, Guanyi Lu, Andrew Bunger, Dustin Crandall

• Task 18.0 CO2-Shale Interactions- Microscopic
Team Members: Angela Goodman, Sean Sanguinito, Barbara Kutchko, Jeff Culp, Mary Tkach,  
Sittichai Natesakhawat, Dustin Crandall, Patricia Madden 
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Gantt Chart
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Gantt Chart
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Gantt Chart
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Gantt Chart
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Gantt Chart
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Gantt Chart
Task 18: Project Timeline Overview
CO2-Shale Interactions- Microscopic (PI: Angela Goodman)

Impact

Key Accomplishments/Deliverables Value Delivered

2015: Quantified CO2 interaction with Na+ exchanged montmorillonite
2016: Effects of short and long term geochemical reactions of fracturing fluid 
with Marcellus Shale and Huntersville Chert
2017: Quantified interactions of CO2 with Utica Shale

• Determine how CO2 and fluid induced alterations of Marcellus, Utica, Mancos, 
Eagleford, and Barnett  shale affect flow pathways in terms of precipitation, 
dissolution, and pore space alteration.

• Identify key properties of shale formations (carbonate rich vs silicate rich) at the 
nano- and micro-scale needed for quantifying CO2 storage and seal activities

Milestones
1. M.8.1 – Quantify the geochemical impact of CO2 and fluid interactions on Utica and Marcellus shale at the nano- and 

micro-scale.
2. Quantify the potential changes in flow properties of Utica Shale that has been modified with CO2 and fluid.
3. Quantify the geochemical impact of CO2 and fluid interactions on Barnett, Eagleford, and Mancos Shale at the nano- and 

micro-scale.
4. Quantify the potential changes in flow properties of Barnett, Eagleford, and Mancos Shale that has been modified with 

CO2 and fluid.
5. Initial database of shale properties at the nano-, micro-, and macro-scale needed for quantifying CO2 storage potential.

2015, 2016, 2017 2018 2019 2020 2021

3 2 3 41 5 3

Go / No-Go
Dependent upon quantitative results with the Utica and 
Marcellus samples

Go / No-Go 
Timeframe

Chart Key

# TRL Score Milestone
Project 
Completion

12/2018
3/2019

12/2019
3/2020

3/2021
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