

Multiscale Modeling and Simulation of Micro-Encapsulated Carbon Sorbent (MECS) Technology

Pacific Northwest

Los Alamos

THE UNIVERSITY OF

TEXAS

West Virginia University.

Debangsu Bhattacharyya¹, Goutham Kotamreddy¹, Ryan Hughes¹ Janine Carney², Justin Finn^{2,3} Zhijie (Jay) Xu⁴, Chao Wang⁴

Lawrence Livermore

¹West Virginia University ²NETL ³AECOM ⁴PNNL

NATIONAL ENERGY

TECHNOLOGY

Outline

□ What is MECS and what is CCSI² trying to do for improving the understanding and economics of this technology?

- Process Modeling of MECS
- □ Bench-Scale CFD Model for MECS
- Device-Scale Model for MECS

MECS Technology

- Being developed by LLNL
- Shell
 - -made of silicone
- Core fluid/material

 -contains solvent (encapsulated by the shell)
-solvent can be highly viscous and/or form solid precipitate upon CO₂ absorption

Typical diameters 100 μm – 600 μm

Currently studying: Sodium carbonate as the
encapsulated solvent $OH^-(aq)$
 $Na_2CO_3(s)$ $OH^-(aq)$
 $CO_3^-(aq)$
 $H_3O^+(aq)$ $OH^-(aq)$
 $CO_2(aq)$
 $HCO_3^-(aq)$
 $Na^+(aq)$ $NaHCO_3(s)$
NaHCO_3(s)Species in chemical equilibrium in
sodium carbonate solutionsSpecies in chemical equilibrium in
sodium carbonate solutions

4x Swelling in H_20

FIG: Swelling of MECS capsules in water¹

¹ Vericella, J. J. et al. Encapsulated liquid sorbents for carbon dioxide capture. Nat. Commun. 6:6124 doi: 10.1038/ncomms7124 (2015).

Challenges of the MECS System where Models can Help

Lawrence Livermore National Laboratory

NATIONAL ENERGY

- Elastic, deformable shell
- Capsule size/density change
- Precipitation inside capsule
- Water loss/uptake during capture and regeneration
- State of the solvent inside the capsule in a location at a given instant is practically impossible to measure
- Hydrodynamics of gas-particle flow

West Virginia University,

Disparity in scales

Pacific Northwest

Los Alamos

Optimal selection and design of the contactor

THE UNIVERSITY OF

TEXAS

Outline

□ What is MECS and what is CCSI² trying to do for improving the understanding and economics of this technology?

Process Modeling of MECS

Bench-Scale CFD Model for MECS

Device-Scale Model for MECS

Reactions

• Kinetically controlled: R1: $CO_2 + OH^- \leftrightarrow HCO_3^-$

• Equilibrium Limited: R2: $CO_3^{2-} + H_2O \leftrightarrow HCO_3^- + OH^-$ R3: $Na_2CO_3 \leftrightarrow 2Na^+ + CO_3^{2-}$

Pinsent B.R., Pearson L., Roughton F.J.W., "The Kinetics of Combination of Carbon Dioxide with Hydroxide Ions", Trans. Faraday Soc., 52, 1512-1520, 1956 Astarita G., Savage, D. W., Longo, J. M., "Promotion of Mass Transfer in Carbonate Solutions", Chemical Engineering Science, 36, 581, 1981

Thermodynamic and Capsule Model Validation

Fixed Bed Cycle Modeling: Impact of the Residence Time

Energy Breakdown for MECS (Na₂CO₃) vs MEA

(w/o considering heat loss due to steam leaving the desorber/desorption cycle)

Basis (1 kg of solvent)	MEA	MECS (Na ₂ CO ₃) $\tau = 100 \text{ s}$	MECS (Na ₂ CO ₃) Similar to MEA
Sensible heat for liquid (kJ)	320	359	359
Sensible heat for shell (kJ)	0	51	51
Solvent (wt.%)	30	20	30
Solvent (mol)	4.91	1.88	2.83
Abs. outlet loading(mol CO ₂ /mol solvent)	0.41	0.15	0.41
CO ₂ /mol solvent	0.17	0.01	0.17
Relative loading change	0.24	0.14	0.24
CO ₂ released (mol)	1.17	0.26	0.67
Heat of desorption (kJ/mol CO ₂)	90	25.2	25.2
Heat of desorption (kJ)	106.09	6.65	17.11
Sensible to total heat ratio	0.751	0.984	0.960

TECHNOLOGY

Lawrence Livermore

National Labora

Similar to MEA: Assuming same solvent concentration and same relative loading change as MEA

THE UNIVERSITY OF

TEXAS

🎸 WestVırginiaUniversity,

Pacific Northwest

Los Alamos

Impact of Heat Recovery [20 wt% Na₂CO₃]

	Current Reac	tion Rate	10X Current Raction Rate	
	<i>τ</i> = 75 s	<i>τ</i> = 100 s	<i>τ</i> = 75 s	<i>τ</i> = 100 s
Total duty (GJ/tonne CO ₂) No heat recovery	64.5	25.7	43.3	18
Total duty (GJ/tonne CO ₂) 50% heat recovery	34.4	15.21	21.1	8.8
Total duty (GJ/tonne CO ₂) 75% heat recovery	18.7	9.41	10.9	4.55
Total duty (GJ/tonne CO ₂) 80% heat recovery	16.6	8.09	8.76	3.3
Total duty (GJ/tonne CO ₂) 90% heat recovery	9.29	5.95	4.53	2.0
Sensible heat (%)	99.1	98.9	98.7	98.4

MEA Regeneration duty:~ 3.4 GJ/tonne CO₂

Tradeoff between Capital and Operating Costs

Conclusions & Future Work (Process Modeling)

- High temperature absorption/desorption data (beyond 60°C) and data reflecting water transport through the shell are currently not available. When these data are available from LLNL, further modification in the model may be necessary.
- Heat recovery: critical, but difficult to obtain high heat recovery for fixed bed processes due to the cyclic nature of the process
- Both high heat recovery and higher loading can be obtained using other types of beds such as moving beds
- Development of moving bed and bubbling fluidized bed models is in progress

Outline

□ What is MECS and what is CCSI² trying to do for improving the understanding and economics of this technology?

- Process Modeling of MECS
- Bench-Scale CFD Model for MECS

Device-Scale Model for MECS

CFD Models for Simulating MECS Unit Operations

NATIONAL ENERGY TECHNOLOGY

Lawrence Livermore National Laboratory

Los Alamos

3-D distributions in volume fraction, temperature and species concentration are predicted

GOAL: Develop and validate a predictive CFD tool for MECS behavior under fixed/fluidized bed unit operations.

1) https://mfix.netl.doe.gov/experimentation/

🎸 WestVırginiaUniversity.

THE UNIVERSITY OF

U.S. DEPARTMENT OF

Mass Transfer Model for Encapsulated Carbonate Solutions

Extensive Model Validation

Lawrence Livermore National Laboratory

Los Alamos

- ✓ Vapor-liquid equilibrium for carbonate solutions¹
- ✓ Onset of precipitation for loaded carbonates²
- ✓ Vacuum chamber CO₂ absorption rate^{3,4,5}
- ✓ Bench scale fluidized bed CO₂ capture⁶ ₂

0.15

FIG: Bench scale

fluidized bed⁵

FIG: Vacuum chamber absorption^{3,4}

¹Knuutila et al., CES, 2010; ²Gartner et al, 2004; ³Vericella et al., Nature Comms; ⁴Hornbostel et. al, submitted; ⁵Finn & Galvin, IJGGC, 2018; ⁶Finn et al., in preparation

WestVirginiaUniversity,

THE UNIVERSITY OF

Simulation & Experiment of Bench-Scale Absorber

Conclusions (Bench-Scale CFD Model)

- 1. MECS technology: Combine benefits of solvents and sorbents for carbon capture.
- 2. Predictive models needed to aid process design process. Our approach: MFIX-DEM. \checkmark Precipitating carbonate chem. \checkmark CO₂ & H₂O mass transfer \checkmark Elastic size change
- 3. Validation with controlled MECS CO₂ absorption experiments & literature data for carbonates.
- 4. Ongoing studies of **fluidized bed** absorber/regenerator unit operations.

Outline

□ What is MECS and what is CCSI² trying to do for improving the understanding and economics of this technology?

- Process Modeling of MECS
- Bench-Scale CFD Model for MECS
- Device-Scale Model for MECS

Device-Scale CFD for RTD

Device-scale CFD Model

- MFIX-TFM for multiphase gas/solid flow
- MECS chemistry from bench-scale MFIX-DEM model

Testing Conditions

- Pulse experiments
- MECS are fully packed at designed bed height
- Entire absorber reaches a hydrodynamic steady state

RTD Computation

• Residence time distribution function $E(t) = \frac{C(t)}{\int_0^\infty C(t)dt}$ C(t) is change of gas concentration with time

Lawrence Livermore

- Mean residence time $\bar{t} = \int_0^\infty t \cdot E(t) dt$
- Variance $\sigma^2 = \int_0^\infty (t \bar{t})^2 \cdot E(t) dt$

NATIONAL ENERGY TECHNOLOGY

RTD Results

• Effect of gas flow rate

RTD Results, cont'd

Effect of MECS size on gas phase RTD

• 0.72 kg/s gas flow rate

Residence time distribution gets slightly narrower with increasing particle size

Lawrence Livermore

National Laboratory

NATIONAL

TECHNOLOG)

Mean residence time and variance decrease with increasing particle size

WestVirginiaUniversity.

Pacific Northwest

NATIONAL LABORATORY

Los Alamos

THE UNIVERSITY OF

TEXAS

Characterize Gas/Solid Mixture

- Gas flow rate: 0.72 kg/s; particle size: 120, 240, 360, and 480 μm
- Steady state when all beds reach a constant holdup
- Smallest particle follows Gaussian distribution with better homogeneity-more gas/solid drag and longer mean residence time

Summary

- Effect of particle size and gas flow rate on mean residence time and variance
- Statistical characterization of gas/solid mixture homogeneity
- CFD results as guidance to improve MECS and device-scale absorber design
 - Assist in process modeling
 - Optimize bed height, MECS size, etc.

Acknowledgements

 LLNL (Joshua Stolaroff, Pratanu Roy, Katherine Mary Ong, William R. Bourcier and others from LLNL) for the experimental data and support

For more information <u>https://www.acceleratecarboncapture.org/</u>

Debangsu Bhattacharyya West Virginia University Debangsu.Bhattacharyya@mail.wvu.edu

Janine Carney NETL Janine.Craney@netl.doe.gov

Zhijie Xu PNNL Zhijie.Xu@pnnl.gov

