

Contactor Design for Transformational Sorbents: Application to LBNL MOF

Ryan Hughes¹, Goutham Kotamreddy¹, Janine Carney², Alex Dowling³_, Debangsu Bhattacharyya¹

1West Virginia University 2NETL 3University of Notre Dame

 Exploiting transformational sorbents: LBNL MOF □ Process Modeling □ CFD Modeling □ Design of Experiments

□ Upcoming/Future Works

Exploiting Transformational Sorbents: LBNL MOF

- Complex and highly nonlinear equilibrium and kinetic characteristics
- Need to exploit the step-shaped isotherms
- Limiting mechanism is likely to be heat transfer, possibly along with mass transfer- both strongly depend on contactor type, design, and configuration
- Heat recovery from the hot solid is critical for reducing the energy penalty but can be challenging
- Lack of understanding of mass/heat transfer characteristics and hydrodynamics for different contactor types under various operating regimes
- Multiple spatial and time scales are of interest
- Strong tradeoff between CAPEX and OPEX

□ Exploiting transformational sorbents: LBNL MOF

□ Process Modeling

Q CFD Modeling Design of Experiments

□ Upcoming/Future Works

Isotherm Model

- Traditional isotherm models unable to predict experimental data
- Sips isotherms have been successfully used to model $CO₂$ adsorption on MOFs and activated carbons^{1,2}
- Modified dual-site Sips isotherm developed taking into account both chemisorption and physisorption

Kinetic Model

- A kinetic model is developed by considering both the physisorption and chemisorption
- Model parameters are estimated using TGA data from LBL

1 - Bao, Z., Yu, L., Ren, Q., Lu, X., Deng, S. Adsorption of CO₂ and CH₄ on a magnesium-based metal organic framework. Journal of Colloid and Interface Science. 2011; 353, 549-556

2 - Tzabar, N., Brake, H. Adsorption isotherm and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride. Adsorption. 2016; 22, 901-914

Axial-Flow Fixed Bed Model

Process Scale

embedded heat exchanger

• Temperature swing adsorption (TSA) cycle using an

• Sized to process flue gas from a gross 644 MWe power

THE UNIVERSITY OF

WestVirginiaUniversity

- Dynamic, 1-D, non-isothermal model
- Incorporates external and internal mass transfer resistances

Lab-Scale Model Validation

•Lab scale experimental data from LBNL for the powdered material

NATIONAL

plant¹ Gas In **Flue Gas** 1 Steam + CO₂ Out 0.8 E° ^{0.6} Step3: Step1: Step2: Purge/ 0.4 **Absorption Desorption** Cooling/ 0.2 Model Results **-**Experimental Data 0 0 10 20 30 40 50 60 **Clean Flue Gas** Gas Out **Steam In** Time (min)

•**Key Observation**: Breakthrough time can increase by about 4 times for isothermal operation in comparison to adiabatic operation

Los Alamos

1 - Fout et al., Cost and Performance Baseline for Fossil Energy Plants Volume 1. 2015. DOI: DOE/NETL-2015/1723.y

Lawrence Livermore

Moving Bed Dynamic Model

os Alamos.

Lawrence Livermore

NATIONAL

7

THE UNIVERSITY OF

WestVirginiaUniversity

Techno-Economic Analysis

• Techno-economic analysis using equivalent annual operating cost (EAOC)

$$
EAOC = Capital cost \left[\frac{i}{(1 - (1 + i)^{-n})} \right] + Yearly Operating Costs
$$

 $i =$ Discount Rate $n =$ Number of Years

- Capital cost evaluated using Aspen Process Economics Analyzer (APEA) and standard correlations1
- Operating costs includes process utilities- steam, electricity, and cooling water
- Comparison to a traditional MEA system2
- 1 –Turton R, Shaeiwitz J A, Bhattacharyya D, Whiting W B, "Analysis, Synthesis, and Design of Chemical Processes", 5th Edition, 2018, Prentice Hall, NJ
- 2 Fout et al., Cost and Performance Baseline for Fossil Energy Plants Volume 1. 2015. DOI: DOE/NETL-2015/1723.y

Basic TSA Process

• No thermal management during adsorption results in sharp temperature spikes and low solid loadings

Temperature and loading profiles at end of adsorption step for a specific basic TSA process case

WestVirginiaUniversity

Pacific
Northwest

NATIONAL
LABORATOR'

THE UNIVERSITY OF

U.S. DEPARTMENT OF

Modified TSA Process

Temperature and loading profiles at end of adsorption step for a specific modified TSA process case

THE UNIVERSITY OF

TEX

WestVirginiaUniversity

Pacific
Northwest

NATIONAL
LABORATORY

10

U.S. DEPARTMENT OF

Modified TSA Process with Heat Recovery

Heat Recovery

- Utilizing remaining sensible heat at the end of desorption
- MEA systems can achieve about 85% heat recovery which may not be feasible for a gas-solid system **Energy Basic TSA Modified TSA**

Moving Bed Analysis

- Capital cost uncertainty
	- ±50% to account for uncertainties in the moving bed process equipment

12

U.S. DEPARTMENT OF

THE UNIVERSITY OF

TEXAS

WestVirginiaUniversity

Process Modeling Highlights

- Techno-economic analysis shows potential to improve when compared to traditional MEA system
	- **Fixed bed system**: cooling during adsorption and 35% heat recovery result in similar EAOC as the MEA system
	- **Fixed bed system**: cooling during adsorption and 85% heat recovery result in 10% decrease in EAOC compared to the MEA system
	- **Moving bed system**: For the nominal cost, about 14% decrease in EAOC compared to the MEA system can be achieved. If the capital cost is lower by 50%, then 30% reduction in EAOC may be possible.

□ Exploiting transformational sorbents: LBNL MOF □ Process Modeling □ CFD Modeling

Design of Experiments □ Upcoming/Future Works

Multiphase Flow Modeling

Why CFD for MOF?

Efficiency of CO₂ adsorption will depend on overall flow distribution and local inhomogeneity

Micro Scale particles in gas (~100's microns) Meso Scale particle clusters (~ mm's to meters)

WestVirginiaUniversity

Device Scale large flow structures in a CFB (~10's meters)

 ϵ_{q} $1.0 0.9 0.8$ 0.7 0.6 $0.5 0.4 -$

THE UNIVERSITY OF

Use MFIX to predict 3-D distributions in volume fraction, temperature and species concentration

1) <https://mfix.netl.doe.gov/experimentation/> 2) Shaffer, F., et al., NETL MFSW, 2010. Image: Streamers, clusters, particles in CFB

U.S. DEPARTMENT OF

Lawrence Livermore

Los Alamos

Northwest LABORATOR'

15

Chemistry and Mass Transfer

 $CO_2(g) \Leftrightarrow CO_2(s)_{c,p}$

$$
\mathcal{R}_{g,CO2} = -\sum \mathcal{R}_{m,CO2,\propto}
$$

$$
\mathcal{R}_{m,CO2,\propto} = \varepsilon_m \rho_m X_{m,MOF} \frac{dn_{\propto}}{dt}
$$

$$
\frac{dn_{\alpha}}{dt}=k_{ov,\alpha}(n_{\alpha}^{*}(P,T)-n_{\alpha}) \quad \alpha=c,p
$$

Lawrence Livermore

Los Alamos

Fig. spherical porous adsorbent particle

Isotherm model for $n^*_{\infty}(P,T)$ **based on WVU sub-model**

 dual-Sips isotherm model for chemical/physical adsorption : parameterized with equilibrium data

Mass transfer model for k_{ov} based on WVU **sub-model***

- **reaction kinetics** : term introduced by WVU and parameterized with TGA data
- **macropore diffusion resistance** : parameterized with breakthrough data (molecular diffusion + Knudsen diffusion)
- **gas-film resistance** : neglected; looking to incorporate this term (separately like process model as opposed to within LDF)

16

micropore diffusion resistance : neglected

WestVirginiaUniversity

*Similar to the Linear Driving Force model of Farooq/Ruthven (1990)

CFD Modeling Highlights

Incorporated chemistry, heat (preliminary) and mass transfer into CFD framework for diamine appended MOF : dmpn-Mg₂(dobpdc)

> **Approach: CFD-TFM** that includes adsorption isotherm and kinetics for $CO₂$ transfer and corresponding density changes.

2. Verified model with expected sub-model predictions and validated with data from LBNL: equilibrium isotherms, TGA and breakthrough experiments

□ Exploiting transformational sorbents: LBNL MOF □ Process Modeling **Q CFD Modeling** □ Design of Experiments

□ Upcoming/Future Works

Design of Experiments for Sorbent Modeling and Characterization

Lawrence Livermore

Problem Statement: What experimental designs maximize useful information collection to:

- Create predictive models of sorbent processes and ultimately reduce uncertainty in technoeconomic optimization.
- Discern between proposed mechanisms to accelerate scientific understanding.

Accomplishments:

- U. Notre Dame joined CCSI² team in May 2019.
- Shared models from WVU to ND, creating software for parameter estimation.

WestVirginiaUniversity

19

□ Exploiting transformational sorbents: LBNL MOF □ Process Modeling **Q CFD Modeling** Design of Experiments □ Upcoming/Future Works

Upcoming/Future Works

Process Modeling

- Further development of the kinetic model considering species other than $CO₂$
- Development of the mass transfer and heat transfer model using data from the shaped particles

WestVirginiaUniversity.

21

- Radial flow fixed bed model development and optimization
- Rotary packed bed model development and optimization
- Bubbling/circulating fluidized bed model development and optimization

CFD Modeling

- Simulate/investigate contactor (packed/fluidized) performance under different conditions
- Finish extending to PIC-CFD & investigate $O(m)$ pilot scale adsorber
- Continue model refinement
- Add new sub-models as available : additional species mass transfer $(H₂O/N₂)$
- Incorporate gas-side mass transfer resistance : separately or part of LDF

Design of Experiments

- Complete identifiability analysis based on existing experimental capabilities
- Compute optimal experimental designs

Acknowledgements

• LBNL/UC, Berkeley (Jeffrey Long; Stephanie Didas; Rebecca Siegelman; Surya Parker; Alex Forse; Jeff Martell; Matthew Dods), Mosaic Materials (Thomas McDonald Carly Anderson, Graham Wenz) for the experimental data/support/valuable discussions

