

Contactor Design for Transformational Sorbents: Application to LBNL MOF

Ryan Hughes¹, Goutham Kotamreddy¹, Janine Carney², Alex Dowling³, Debangsu Bhattacharyya¹

¹West Virginia University ²NETL ³University of Notre Dame

- Exploiting transformational sorbents: LBNL MOF
- □ Process Modeling
- **CFD** Modeling
- Design of Experiments
- □ Upcoming/Future Works

Exploiting Transformational Sorbents: LBNL MOF

Lawrence Livermore

- Complex and highly nonlinear equilibrium and kinetic characteristics
- Need to exploit the step-shaped isotherms
- Limiting mechanism is likely to be heat transfer, possibly along with mass transfer- both strongly depend on contactor type, design, and configuration
- Heat recovery from the hot solid is critical for reducing the energy penalty but can be challenging
- Lack of understanding of mass/heat transfer characteristics and hydrodynamics for different contactor types under various operating regimes
- Multiple spatial and time scales are of interest
- Strong tradeoff between CAPEX and OPEX

□ Exploiting transformational sorbents: LBNL MOF

Process Modeling

CFD Modeling
Design of Experiments

Upcoming/Future Works

Isotherm Model

- Traditional isotherm models unable to predict experimental data
- Sips isotherms have been successfully used to model CO₂ adsorption on MOFs and activated carbons^{1,2}
- Modified dual-site Sips isotherm developed taking into ${\color{black}\bullet}$ account both chemisorption and physisorption

Kinetic Model

A kinetic model is developed by considering both the \bullet physisorption and chemisorption

_awrence Livermore

Model parameters are estimated using TGA data ${}^{\bullet}$ from LBL

1 - Bao, Z., Yu, L., Ren, Q., Lu, X., Deng, S. Adsorption of CO₂ and CH₄ on a magnesium-based metal organic framework. Journal of Colloid and Interface Science. 2011; 353, 549-556

2 - Tzabar, N., Brake, H. Adsorption isotherm and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride. Adsorption. 2016; 22, 901-914

Axial-Flow Fixed Bed Model

- Dynamic, 1-D, non-isothermal model
- Incorporates external and internal mass transfer resistances

Lab-Scale Model Validation

•Lab scale experimental data from LBNL for the powdered material

NATIONAL

TECHNOLOGY

Process Scale

• Temperature swing adsorption (TSA) cycle using an embedded heat exchanger

• Sized to process flue gas from a gross 644 MWe power plant¹

THE UNIVERSITY OF

WestVirginiaUniversity,

•Key Observation: Breakthrough time can increase by about 4 times for isothermal operation in comparison to adiabatic operation

Los Alamos

1 - Fout et al., Cost and Performance Baseline for Fossil Energy Plants Volume 1. 2015. DOI: DOE/NETL-2015/1723.y

Lawrence Livermore National Laboratory

Moving Bed Dynamic Model

os Alamos

Lawrence Livermore

NATIONAL ENERGY

7

THE UNIVERSITY OF

WestVirginiaUniversity.

Techno-Economic Analysis

• Techno-economic analysis using equivalent annual operating cost (EAOC)

$$EAOC = Capital cost \left[\frac{i}{(1 - (1 + i)^{-n})} \right] + Yearly Operating Costs$$

i = Discount Raten = Number of Years

- Capital cost evaluated using Aspen Process Economics Analyzer (APEA) and standard correlations¹
- Operating costs includes process utilities- steam, electricity, and cooling water
- Comparison to a traditional MEA system²
- 1 –Turton R, Shaeiwitz J A, Bhattacharyya D, Whiting W B, "Analysis, Synthesis, and Design of Chemical Processes", 5th Edition, 2018, Prentice Hall, NJ
- 2 Fout et al., Cost and Performance Baseline for Fossil Energy Plants Volume 1. 2015. DOI: DOE/NETL-2015/1723.y

Basic TSA Process

 No thermal management during adsorption results in sharp temperature spikes and low solid loadings

Temperature and loading profiles at end of adsorption step for a specific basic TSA process case

TEX

WestVirginiaUniversity,

Pacific Northwest

LABORATORY

THE UNIVERSITY OF

U.S. DEPARTMENT OF

Modified TSA Process

Pacific Northwest

NATIONAL LABORATORY

Temperature and loading profiles at end of adsorption step for a specific modified TSA process case

Modified TSA Process with Heat Recovery

Heat Recovery

- Utilizing remaining sensible heat at the end of desorption
- MEA systems can achieve about 85% heat recovery which may not be feasible for a gas-solid system
 Basic TSA Modified TSA

Moving Bed Analysis

- Capital cost uncertainty
 - ±50% to account for uncertainties in the moving bed process equipment

U.S. DEPARTMENT OF

THE UNIVERSITY OF

TEXAS

WestVirginiaUniversity,

Pacific Northwest

NATIONAL LABORATORY

Process Modeling Highlights

- Techno-economic analysis shows potential to improve when compared to traditional MEA system
 - Fixed bed system: cooling during adsorption and 35% heat recovery result in similar EAOC as the MEA system
 - Fixed bed system: cooling during adsorption and 85% heat recovery result in 10% decrease in EAOC compared to the MEA system
 - Moving bed system: For the nominal cost, about 14% decrease in EAOC compared to the MEA system can be achieved. If the capital cost is lower by 50%, then 30% reduction in EAOC may be possible.

Exploiting transformational sorbents: LBNL MOF
Process Modeling
CED Modeling

CFD Modeling

Design of ExperimentsUpcoming/Future Works

Multiphase Flow Modeling

Why CFD for MOF?

Efficiency of CO₂ adsorption will depend on overall flow distribution and local inhomogeneity

Micro Scale particles in gas particle clusters (~100's microns) (~ mm's to meters)

Model the effect of small-scale fluctuations that are too expensive to simulate directly

WestVirginiaUniversity.

Device Scale large flow structures in a CFB (~10's meters)

Use MFIX to predict 3-D distributions in volume fraction, temperature and species concentration

1) https://mfix.netl.doe.gov/experimentation/ 2) Shaffer, F., et al., NETL MFSW, 2010. Image: Streamers, clusters, particles in CFB

THE UNIVERSITY OF

U.S. DEPARTMENT OF

15

Meso Scale

Chemistry and Mass Transfer

 $CO_2(g) \Leftrightarrow CO_2(s)_{c_p}$

$$\mathcal{R}_{g,CO2} = -\sum \mathcal{R}_{m,CO2,\infty}$$

$$\mathcal{R}_{m,CO2,\propto} = \varepsilon_m \rho_m X_{m,MOF} \frac{dn_{\propto}}{dt}$$

$$\frac{dn_{\alpha}}{dt} = k_{o\nu,\alpha}(n_{\alpha}^{*}(P,T) - n_{\alpha}) \quad \alpha = c, p$$

Lawrence Livermore

Los Alamos

Fig. spherical porous adsorbent particle

Isotherm model for $n^*_{\propto}(P,T)$ based on WVU sub-model

 dual-Sips isotherm model for chemical/physical adsorption : parameterized with equilibrium data

Mass transfer model for $k_{ov, \propto}$ based on WVU sub-model^{*}

- reaction kinetics : term introduced by WVU and parameterized with TGA data
- macropore diffusion resistance : parameterized with breakthrough data (molecular diffusion + Knudsen diffusion)
- gas-film resistance : neglected; looking to incorporate this term (separately like process model as opposed to within LDF)
- micropore diffusion resistance : neglected

WestVirginiaUniversity,

*Similar to the Linear Driving Force model of Farooq/Ruthven (1990)

CFD Modeling Highlights

1. Incorporated chemistry, heat (preliminary) and mass transfer into CFD framework for diamine appended MOF : dmpn-Mg₂(dobpdc)

Approach: CFD-TFM that includes adsorption isotherm and kinetics for CO_2 transfer and corresponding density changes.

2. Verified model with expected sub-model predictions and validated with data from LBNL: equilibrium isotherms, TGA and breakthrough experiments

Exploiting transformational sorbents: LBNL MOF
Process Modeling
CFD Modeling
Design of Experiments

Upcoming/Future Works

Design of Experiments for Sorbent Modeling and Characterization

Lawrence Livermore National Laboratory

Problem Statement: What experimental designs maximize useful information collection to:

- Create predictive models of sorbent processes and ultimately reduce uncertainty in technoeconomic optimization.
- Discern between proposed mechanisms to accelerate scientific understanding.

Accomplishments:

- U. Notre Dame joined CCSI² team in May 2019.
- Shared models from WVU to ND, creating software for parameter estimation.

WestVirginiaUniversity.

Exploiting transformational sorbents: LBNL MOF
Process Modeling
CFD Modeling
Design of Experiments
Upcoming/Future Works

Upcoming/Future Works

Process Modeling

- Further development of the kinetic model considering species other than CO₂
- Development of the mass transfer and heat transfer model using data from the shaped particles

THE UNIVERSITY OF

West Virginia University

- Radial flow fixed bed model development and optimization
- Rotary packed bed model development and optimization
- Bubbling/circulating fluidized bed model development and optimization

CFD Modeling

- Simulate/investigate contactor (packed/fluidized) performance under different conditions
- Finish extending to PIC-CFD & investigate O(m) pilot scale adsorber
- Continue model refinement
- Add new sub-models as available : additional species mass transfer (H₂O/N₂)
- Incorporate gas-side mass transfer resistance : separately or part of LDF

Design of Experiments

- Complete identifiability analysis based on existing experimental capabilities
- Compute optimal experimental designs

Acknowledgements

 LBNL/UC, Berkeley (Jeffrey Long; Stephanie Didas; Rebecca Siegelman; Surya Parker; Alex Forse; Jeff Martell; Matthew Dods), Mosaic Materials (Thomas McDonald Carly Anderson, Graham Wenz) for the experimental data/support/valuable discussions

