Monitoring for Faults at a Critical State of Stress

(FE-890-18-FY19)

Ting Chen
Los Alamos National Laboratory
Research Team

• LANL
 – Ting Chen, Youzuo Lin, Andrew Delorey, Xiaofei Ma, Richard Alfaro, Yan Qin, Avipsa Roy, Alex Eddy, Yue Wu, Zhongping Zhang, Tiantong Wang, Peter Roberts, Christine Gammans, Paul Johnson, Velimir Vesselinov, Daniel O'Malley, Rajesh Pawar, George Guthrie

• External partners (leveraging with)
Objectives

Improve the risk assessment of induced seismicity in carbon sequestration through monitoring of critical state of stress

• Pre-injection characterization
 – Identify faults of concern in the region

• During-injection monitoring
 – Avoid large induced seismicity
Critical State of Stress

“Precursor” events occur prior to major slip events (Rouet-LeDuc et al., 2017) and are triggered by stress perturbation (Johnson & Xia, 2005).
Small Signals Reveal Fault State

With comprehensive new catalog (include many more small events), tidal triggering was detected before the M5.7 Prague earthquake, indicating a potential critical state.
Extract Small Signals for Fault State

- **Manual**
 - Least false positive, but may miss small signals
 - High cost: takes hours for 1 well-trained person to process 1-day data from a 1C station

- **Traditional algorithm**
 - e.g., STA/LTA
 - High false positive (requires extra manual inspection); may miss small signals

- **Cross-correlation based**
 - Automatic
 - Can detect smaller signals
 - Computationally expensive

- **Machine learning**
 - Accurate (reduce the detection threshold)
 - Low cost (automatic, fast)
 - Flexible: 1C or 3C; single or multiple stations
Machine Learning for Signal Detection

- Data
 - Seismic waveform
 - Single station, 1C or 3C

- Method
 - Convolutional neural network (CNN)
 - Classification
 - Spectrogram
Application of ML to Field Data

- **Dataset**
 - Oklahoma (water injection)
 - Broadband seismometer
 - 28737 events (2010-2018, OGS)

- **Training**
 - 175 stations
 - 1100980 samples (50% signal, 50% noise)
Performance of ML Signal Detection

- Test
 - 10% samples
- Performance
 - Accuracy: 98% (3C)
 - Accuracy: 95% (1C)
Performance of ML Signal Detection

- Apply
 - OKCFA
 - 2-day continuous data
 - 128 detected events
Performance of ML Signal Detection

- Apply
 - OKCFA
 - 2-day continuous data
 - 128 detected events
Performance of ML Signal Detection

- Apply
 - OK029
 - 1-month continuous data
 - 4720 detected events
Seismic Signals Enhancement

- Enhance SNR to help detect small events on seismic arrays (data from Oklahoma)
- Unsupervised dictionary learning (Bayesian nonparametric model)

\[y_i = D w_i + \epsilon_i \]

Zhang et al. (2018)
Seismic Signals Enhancement

- Enhance SNR to help detect small events on single seismic station (data from Oklahoma, Decatur)

- Adaptive filtering

Zhang et al. (2019)
Extract Signatures from Seismic Catalog

- Geysers, CA (geothermal field)
- Earthquake Catalog:
 - ~400,000 (2003-2017)
 - -0.6 < M < 4.7
Extract Signatures from Seismic Catalog

- Catalog
 - ~ 32,000 events (2009-2018, 0 < M < 5.8)

- Method
 - unsupervised learning based on
 nonnegative matrix/tensor factorization
 (NMF/NTF)

- Investigation
 - Physical relevance of the signals, e.g.,
 correlation with injection? System
 resetting after large event?
Summary

- We have developed machine learning algorithms (CNN) to efficiently detect seismic events
 - One-component record from one station
 - Multi-component record from one station
 - Differentiate seismic signals from noises
 - Detect seismic events of different length in times
- We have demonstrated current capability of this method by applying it to field fluid-injection sites
 - Oklahoma, Decatur
 - High accuracy
 - Detected many more events than original catalog
Summary

- We have developed ML algorithms to enhance SNR
 - Array seismic data
 - Single seismic station data
- We have discovered interesting signatures related to fault state from large seismic catalogs
 - Geysers, CA
 - Oklahoma
Synergy Opportunities

• Injection projects that have seismic monitoring system to collect passive seismic data

• Validate our methodology

• Feed back with seismic characterization and inferred fault state
Benefit to the Program

• Program goals being addressed by this project
 – Improve the risk assessment of induced seismicity in carbon sequestration.

• Project benefits
 – The research project is developing new methodology to identify and monitor faults at a critical state of stress. If successful, the proof-of-concept work will demonstrate at field scale a transformational approach for both identifying potential faults of concern during site pre-characterization and monitoring a site during injection such that induced seismicity is minimized or even avoided.
Project Overview
Goals and Objectives

• Relationship to the program goals and objectives
 – The stress state of the fault is related to risk level of induced seismicity. Monitoring faults at critical state of stress enables advanced risk assessment of induced seismicity for carbon storage.

• Success criteria
 – New methodology for monitoring the stress state of faults
 – Successful application of the methodology to CO₂ storage field
Organization Chart

• LANL
 – Ting Chen, Youzuo Lin, Andrew Delorey, Xiaofei Ma, Richard Alfaro, Yan Qin, Avipsa Roy, Alex Eddy, Yue Wu, Zhongping Zhang, Tiantong Wang, Peter Roberts, Christine Gammans, Paul. Johnson, Velimir Vesselinov, Daniel O'Malley, Rajesh Pawar, George Guthrie

• External partners (leveraging with)
Prior work—IWC analysis of multi-station/multi-component data shows changes in small events using pre-2012 OK dataset
1. Develop/train machine-learning algorithm (ML-1) to extract events from single-component, single-station seismic data
2. Evaluate ability of ML-1 to extract small events relative to interstation waveform coherence (IWC) using pre-2012 OK dataset
3. Extend ML-1 to extract events from multi-component, single-station data (ML-2); test using pre-2012 OK dataset
4. Verification/validation with OK dataset at site scale (2009–2016)
5. Extend ML-2 to extract events from multi-component, multi-station data (ML-3); test using pre-2012 OK dataset
6. Verification/validation with OK dataset at regional scale (2009–2016)
7. Verification/validation with Illinois dataset
8. Verification/validation with Cascadia dataset
9. Protocols for use and application of ML algorithms as applied to seismic datasets at site- (ML-1; ML-2) or regional-scale (ML-3)
– Ma, X. and Chen T., 2019, A neural network based small seismic event detector, AGU Fall Meeting, San Francisco CA.

– Delorey, A. and Chen, T., 2019, Triggered Earthquakes at the Geysers in Northern California, SSA annual meeting, Seattle, WA.

– Lin, Y., Zhang, Z., and Chen, T., 2019, A Neural Network Based Multi-component Earthquake Detection Method, SSA annual meeting, Seattle WA

