

NATIONAL ENERGY TECHNOLOGY LABORATORY

Carbon Storage in DOE/NETL Major Demonstrations

Gary J. Stiegel Director, Major Projects Division Office of Major Demonstrations

DOE's Coal RD&D Investment Strategy

CCT and CCS Demonstrations *A Critical Step for Commercial Deployment*

- CCT and CCS demonstrations reduce technical, economic and environmental risk or uncertainty for new technology
 - Provides the large-scale experience needed to validate pilot or smaller scale tests at the most cost-effective scale
 - Is essential for securing the multi-billion investment needed for commercial deployment of advanced coal projects
 - Assures regulators and the public that advanced CCT technology is environmentally benign and provides significant public benefit and that CCS can provide safe and permanent carbon storage

• CCS will only be deployed commercially if:

- Carbon reduction is mandated by regulation or carbon emissions are monetized
- It proves to be cost competitive with other low carbon alternatives (e.g., NGCC, nuclear)
- Commercial risks are regarded as acceptable

"If we can develop the technology to capture the carbon pollution released by coal, it can create jobs and provide energy well into the future." President Barack Obama, February 3, 2010

Importance of CCT Demonstrations

- Keeping the existing coal fleet in service enhances the economic security of the U.S.
 - COE is ~\$30/MWh for existing plants vs. over \$80/MWh for new plants
 - A large fraction (over half) of existing coal plants are good candidates for retrofit of additional clean-up and CCS technology^{2,3}
 - Retrofitting advanced CCS technology to existing plants can be the least-cost option for providing clean and low carbon power
- CCTs can provide a low-cost option for providing additional clean electric power from domestic resources:
 - The LCOE for new coal plants with advanced technology will compete favorably with nuclear and other low carbon options for power generation
 - Preserves U.S. manufacturing jobs by making American-made products more competitive
 - Reduces cost burden to electricity consumers in an economically challenging times¹
 - Provides price stability coal prices for utilities have been relatively stable
- Successful demonstration of CCT/CCS technology is essential to subsequent commercial deployment

DOE's Major Demonstrations Program *A History of Innovative Projects*

FE RD&D Performance Measures and Goals

	FE Performance Goals			
Performance Measure	Current FE R&D Program	Recovery Act FE RD&D Projects	Total Enhanced FE R&D Program	
FE-1: Number and MWe of projects funded to capture CO_2 from anthropogenic sources		8-10 projects, at least 3 CO_2 capture technologies, equivalent to 750 to 2,000 MWe	NA	
FE-2: Characterize number of geological reservoirs for CO ₂ storage	Recovery Act Targets Only – No	Characterize 10 geologic reservoirs, representing at least 5 types; with $0.3 - 1$ billion tons of CO ₂ capacity		
FE-3: Number of students and professionals trained for future capture and storage industry	FE R&D Program Equivalent Targets	Train 100 students conducting 40,000 research hours, and 500 Professional Development Units or Continuing Education Units (CEU)		
FE-4: Tons CO_2 captured and stored per year		5 million tons per year by 2015		
FE-5: Tons CO_2 emissions avoided	11.8 million tons by 2015	7.5 million tons by 2015	19.5 million tons by 2015	
FE-6: Barrels of oil consumption displaced (Crude Oil Equivalent) per year	8.8 million barrels of foreign oil displaced per year	4 million barrels of foreign oil displaced per year	12.8 million barrels of foreign oil displaced per year	

6

DOE's Major Demonstrations Program Current Program Objectives and Targets

Clean Coal Power Initiative

• CCPI-3

- Demonstrate next generation technologies from coal-based electric power generating facilities that capture/sequester, or put to beneficial reuse, minimum of 300,000 tons per year of CO₂ emissions
- Minimum coal or coal refuse energy input: 75% (Closing 1); 55% (Closing 2)
- Attain 90% CO₂ capture efficiency in treated flue gas (Closing 1); 50% (Closing 2)
- COE increase < 10% for gasification; < 35% for combustion & oxy-combustion (targets)

Industrial Carbon Capture and Sequestration

- ICCS-Area 1
 - Demonstrate advanced CCS technologies, at industrial sources, that may produce heat, fuels, chemicals, H₂ or other useful products with or without electricity production
 - Demonstrate sequestration with 1,000,000 tons per year of CO_2 emissions

FutureGen 2.0

 Demonstrate oxy-combustion repowering with >1,000,000 tons per year of CO₂ emissions sequestered in a saline aquifer

Major CCS Demonstration Projects Project Locations & Cost Share

NATIONAL ENERGY TECHNOLOGY LABORATORY

8

Portfolio of Capture and Storage Approaches

	Plant Type		Sequestration		Feedstock	
	Power	Industrial	Saline	EOR	Feeusiock	
Pre-combustion						
HECA (IGCC-Polygen)	Х	Х		Х	Coal/Coke blend	
Southern-Kemper Co. (IGCC)	X			X	Lignite, MS	
Summit Texas (IGCC-Polygen)	x	X		x	Coal, sub-bituminous, WY	
Leucadia, Lake Charles (Methanol)		x		х	Petroleum coke	
Air Products and Chemicals, Inc. (SMR)		x		х	Natural gas	
ADM (Capture from Biofuels)		x	X		Ethanol production from biomass	
Post-combustion						
Mountaineer	Х		X		Coal, bituminous	
NRG Energy	X			X	Coal, sub-bituminous, WY	
Oxy-combustion						
FutureGen 2.0	Х		X		Coal	
CCPI ICCS Area 1 FutureGen 2.0						

Clean Coal Power Initiative (CCPI)

(10)

CCPI Active CCS Projects

CCPI Round	Project	Recipient	CO ₂ Capture Technology	Sequestration	CO ₂ Seq. (TPY)	Seq. Start
CCPI-2	Kemper	SCS	Selexol®	EOR	3,000,000	2014
CCPI-3	HECA	HECA	Rectisol®	EOR	2,500,000	2018 (est.)
CCPI-3	Mountaineer	AEP	Chilled Ammonia Process	Saline	1,500,000	2015
CCPI-3	WA Parish	NRG Energy	Fluor Econamine FG Plus SM	EOR	1,400,000	2014
CCPI-3	TCEP	Summit	Rectisol®	EOR	3,000,000	2014

(11)

Southern Company Services, Inc. CCPI-2 Advanced IGCC with CO₂ Capture

- Kemper County, MS
- 582 MWe (net) IGCC: 2 KBR Transport Gasifiers, 2 Siemens Combustion Turbines, 1 Toshiba Steam Turbine
- Mississippi Lignite Fuel
- ~67% CO₂ capture (Selexol[®] process) 3,000,000 tons CO₂/year
- EOR Sequestration site TBD (Start 2014)
- Total Project: \$2.01 Billion DOE Share: \$270 Million (13%)

Key Dates

- Project Awarded: Jan 2006
- Project moved to MS: Dec 2008
- Construction: Jul 2010
- NEPA ROD: Aug 2010
- Operations: May 2014

<u>Status</u>

- NEPA Record of Decision: 8/19/2010
- Construction initiated: 9/16/2010
- Process equipment installation beginning

(12

Southern Company Services, Inc. CCPI-2 Construction Status - October 2011

Southern Company Services, Inc. CCPI-2 Gasifier and Fluid Bed Dryer Housing

Southern Company Services, Inc. CCPI-2 Construction Status, October 2011

Summit Texas Clean Energy, LLC CCPI-3 Advanced IGCC-Polygen

- Penwell, Ector County, TX
- 400 MWe (gross) Greenfield IGCC with Siemens Gasification and Power Block
 - SFG-500 gasifiers (2 x 50%)
 - High H₂ SGCC6-5000F combined cycle (1 x 1)
- PRB sub bituminous coal fuel
- 90% CO₂ capture 3,000,000 tons CO₂/yr
 - 2-stage Water Gas Shift
 - Linde Rectisol® AGR
- Permian Basin EOR (Start: 2014)
- Total Project: \$1.727 Billion DOE Share: \$450 Million (26%)

Key Dates

16

- Project Awarded: Jan 2010
- Construction: Jun 2012
- Financial Close: 1st Q FY2012
- Operation: Jul 2014

<u>Status</u>

- Air permit: Dec 2010
- Urea contract: Jan 2011
- CO₂ contract (60% of total): May 2011
- Power off-take term sheet: Jun 2011
- Record of Decision: Sep 2011
- Negotiating project financing

Hydrogen Energy California Advanced IGCC-Polygen

- Kern County, CA
- Up to 280 MWe (net) IGCC, 1.0 MT/yr Urea/UAN
- 90% CO₂ capture 2,500,000 tons CO₂/year
- EOR Elk Hills oil field (Start: TBD)
- Fuels: Bituminous Coal/Petcoke
- Maximize use of non-potable water for power production
- Recycle all IGCC/project wastewater with 100% zero liquid discharge
- Total Project : \$4.0 Billion
 DOE \$408 Million (10%)

Key Dates

- Project Awarded: 9/30/2009
- Project Being Re-baselined

- New Owner, SCS Energy: 9/2011
- FEED initiated: 9/21/2011

American Electric Power Co. (AEP) CCPI-3 Advanced Post Combustion CO₂ Capture

- New Haven, WV
- 235 MWe slipstream at AEP's 1300 MWe Mountaineer Plant
- 90% CO₂ capture (Alstom Chilled Ammonia Process) 1,500,000 tons CO₂/year
- Deep saline sequestration in the Rose Run and Copper Ridge formations (Start: 2015)
- Total Project: \$668 Million
 DOE Share: \$334 Million (50%)
 - \$146 Million ARRA
 - \$188 Million Non-ARRA

Key Dates

- Project Awarded: Jan 2010
- FEED Complete: Sep 2011
- Construction: Jan 2013
- Operation: Dec 2015

- FEED Completed: Sep 2011
- NEPA: Draft EIS completed; on hold
- Project Postponed: Cooperative Agreement ended 9/30/2011

W.A. Parish NRG Energy CCPI-3 Advanced Post Combustion CO₂ Capture

- Thompsons, TX (near Houston)
- 240 MWe slipstream at NRG Energy's W.A. Parish power plant
- PRB sub bituminous coal fuel
- 90% CO₂ capture (Fluor's Econamine FG PlusSM process) 400,000 tons CO₂/year
- Texas Gulf Coast EOR (Start: 2014)
- Total Project: \$339 Million DOE Share: \$167 Million (49%)

Key Dates

- Project Awarded: May 2010
- Construction: Dec 2012
- Operation: Dec 2014

- 60 MWe FEED almost complete
- Project being scaled up to improve economics
- Initiated 240 MWe FEED: 5/3/2010
- Acquisition of EOR Host Site Completed: 10/3/2011
- NEPA Public Scoping Meeting Scheduled: 11/30/2011, 12/1/2011

Industrial Carbon Capture & Storage (ICCS)

20

CO₂ Capture from Industrial Sources Low Hanging Fruit

- Globally, industry accounts for 40% of energy-related CO₂ emissions -- mostly in developing countries*
- Many industrial facilities are large point sources
- In some plants, CO₂ is already being captured in order to produce the desired product (e.g., H₂/NH₃), and additional capture cost is not incurred
- CO₂ concentration in treated stream may be high or nearly pure
- Often located near potential storage sites
- Demonstration of capture and compression technology, as well as CO₂ storage experience, is applicable to coal-fired power generation

Hanson Permanente Cement Kiln, Los Altos, CA, 2008

NATIONAL ENERGY TECHNOLOGY LABORATORY

* Global CCS Institute, Klaas van Alphen, 2010, http://www.ieaghg.org/docs/General_Docs/Summer_School/VAN_ALPHEN_-_Industrial_Sources_-_secured.pdf Photo Source: kqedquest on flickr - http://www.flickr.com/photos/kqedquest/2388352316/

Active ICCS Area 1 Projects – Phase 2

Project	Recipient	CO ₂ Capture Technology	Sequestration	CO ₂ Seq. (TPY)	Seq. Start
Fermentation CO ₂	ADM	N/A	Saline	1,000,000	2013
SMR H ₂ Production	APCI	VSA	EOR	1,000,000	2013
Methanol from Petcoke Gasification	Leucadia Energy, LLC	Rectisol®	EOR	4,500,000	2014

22

Archer Daniels Midland Company ICCS Area 1 CO₂ Capture from Biofuel Plant

- Decatur, IL
- CO₂ is a by-product (>99% purity) from production of fuel grade ethanol via anaerobic fermentation
- Up to 90% CO₂ capture; dehydration (via triethylene glycol) and compression – 1,000,000 tons CO₂/year
- Sequestration in Mt. Simon Sandstone saline reservoir (Start: July 2013)
- Total Project: \$208 Million DOE Share: \$141 Million (68%)

Key Dates

- Phase 2 Awarded: Jun 15, 2010
- FEED Complete: Apr 2011
- Construction: May 2011
- Operation: Jul 2013

- Detailed design in progress
- NEPA completed
- Construction in progress
- UIC Class VI permit submitted: 7/26/2011

Archer Daniels Midland Company ICCS Area 1 Construction Status – October 2011

Air Products and Chemicals, Inc. ICCS Area 1 **Steam Methane Reforming with CO₂ Capture**

- Port Arthur, TX (Hydrogen plant at Valero Refinery)
- 90% CO₂ capture (Vacuum Swing Adsorption) from 2 steam-methane reformers (SMRs) yielding >1,000,000 tons CO₂/year
- ~28 MWe cogeneration unit to supply makeup steam to SMRs and operate VSA and Compression Equipment
- CO₂ to Denbury pipeline for EOR in West Hastings oil field (Start: 2012)
- Total Project: \$431 Million DOE Share: \$284 Million (66%)

Key Dates

- Phase 2 Awarded: Jun 15, 2010
- FEED Complete: Nov 2010
- Construction: Aug 2011
- Operation: Jan 2013

Status

- CO₂ off-take agreement executed with **Denbury; CO₂ capture and utilities** agreement executed with Valero
- Permit By Rule (PBR) and Standard Air Permits Issued by TCEQ: May 2011
- Phase 2B authorized by NETL: 6/1/2011
- FONSI Issued: 7/8/2011
- **Construction in progress**

Air Products and Chemicals, Inc. ICCS Area 1 Construction Status – November 2011

Leucadia Energy, LLC ICCS Area 1 Petcoke Gasification to Methanol

- Lake Charles, LA
- GE Energy Gasification (5 gasifiers: 4 hot/1 spare)
- 730 Million gallons/year methanol
- 90% CO₂ capture (Rectisol[®] process); 4,500,000 tons CO₂/year
- CO₂ to Denbury pipeline for EOR in Texas at the West Hastings oil field (Start 2015)
- Total Project: \$436 Million DOE Share: \$261 Million (60%)

Key Dates

- Phase 2 Awarded: Jun 17, 2010
- Complete FEED: Jun 2011
- Construction: Oct 2012
- Operation: Jun 2015

- FEED in progress
- NEPA EIS in progress
- Negotiating product off-take agreements

FutureGen 2.0

28)

FutureGen 2.0 *Oxy-Combustion w/ CO*₂ Sequestration

- Meredosia, IL and Morgan Co., IL
- 200 MWe gross oxy-combustion repowering of Ameren's Meredosia Unit 4 steam turbine (Start 2016)
- 90% CO₂ capture (cryogenic separation) 1,300,000 tons CO₂/year
- Deep saline sequestration in Mt. Simon formation
- Total Project: \$1.3 Billion DOE Share: \$1.05 Billion (81%)

Key Dates

- Complete FEED: Oct 2012
- Construction: Nov 2012
- Operation: May 2016

- Pre-FEED in progress
- Sequestration site characterization and validation In progress
- NEPA in progress, public scoping meetings 2nd Q CY2011

For Additional Information

Office of Fossil Energy <u>www.fe.doe.gov</u>

30

NETL <u>www.netl.doe.gov</u>