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PRESENTATION OUTLINE

Time-Lapse Seismic Data

Seismic Joint Inversion to Improve the Certainty of CO, Plume Position
Accomplishments

Lessons Learned

Synergy Opportunities

Summary
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TIME-LAPSE SEISMIC DATA
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JOINT INVERSION
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JOINT INVERSION

R e Varaton i et

Reservoir l i i || | |i | l I Amplitudes
Properties

Estimation

Distance

rl |||||||||| L L T e e T T T T (L L L L L L L L LR TP e ] I
4-D Difference .

) Pressure
Reservoir

Saturation

* Reduce the uncertainty of detecting and assessing
the location of CO, plume boundaries

SDEERC | LNDNORTH DAKOTA

Distance

lsniliviaglossalivsbomin ol omiabiss s bbb Dol losslisoadosallisns Dbl
1{2014 Monitor

Before CO, Injection

Critical Challenges. Practical Solutions.



JOINT INVERSION
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" WAVE-EQUATION-BASED AMPLITUDE-VARIATION-WITH-
OFFSET (WEB-AVO)

. . {Standard
Primaries

» Target-oriented full-waveform elastic Inversion Mode
inversion of seismic data. Conversions
* Directly inverts for compressibility (x)
® Reservoir
(1/bulk modulus) and shear o ——
compliance (M) (1/shear modulus). P eservoir

e Simultaneous joint inversion of Multiples

baseline and monitor surveys. o
Transmission

Effects
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WEB-AVO

Time domain

Wavelet

Well Logs, Horizons and Seismic

Velocities Incident field (in

background)

.

Baseline Monitor

Migrated seismic
gather

Depth Im)

Linear |

Use wave-equation
to add higher order
of scattering

AVO inversion

Y

Elastic reservoir
properties

Simultaneous



TIME-LAPSE AMPLITUDE DIFFERENCE
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TIME-LAPSE WEB-AVO PARAMETERS

Simultaneous Joint Inversion of 2012-2014 Time-Lapse Data Set
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Facies included directly within the
Inversion algorithm

Different low-frequency models for
each defined facies

— Bayesian analysis within the
Inversion to choose low
frequency model

— Not interpolated between wells

Rock physics constrained by
geologic facies

Time-lapse difference from single or
multirealization inversions
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Ji-Fi

Time-Lapse Amplitude Difference Geologic Facies
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Depth Trend Analysis
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Depth Trend Analysis
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Ji-Fi
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Ji-FI: ACOUSTIC IMPEDANCE
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Ji-FI: ACOUSTIC IMPEDANCE
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JiI-FI: FACIES
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Ji-Fi: FACIES
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Ji-FI: ACOUSTIC IMPEDANCE
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GAS SATURATION (RESERVOIR SIMULATION)
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Ji-Fi
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Ji-Fi

Probabilities
of
Oil Saturated with
CO,
Distribution

SDEERC | LNDNORTH DAKOTA

1 I
B o

O
Probability

L I
2R

T
o

Ji-Fi

Critical Challenges. Practical Solutions.



Ji-Fi
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RESERVOIR SIMULATION vs. Ji-Fi
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ACCOMPLISHMENTS TO DATE

« Two workflows have been developed to estimate reservoir properties from
time-lapse seismic inverted parameters that improve the certainty about the
position of the CO, plume over time.

— WEB-AVO

¢ A new simultaneous time-lapse joint inversion algorithm was developed for this
project and successfully applied to our data set.

— Ji-Fi
¢ Highly heterogeneous reservoir has been satisfactorily mapped to lithological
and litho-fluid facies.
¢ Capability to quantify uncertainty detecting CO,, distributions.
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ACCOMPLISHMENTS TO DATE

 First validations of shear compliance as indicator of pressure effect and
saturation distributions based on reservoir simulations.

o Extended abstract (Society of Exploration Geophysicists)

— Simultaneous time-lapse WEB-AVO inversion for seismic reservoir monitoring:
Application to CO, enhanced oil recovery at the Bell Creek oll field.
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LESSONS LEARNED

e Land seismic data present more challenges than marine data.
o A multidisciplinary approach is required from the beginning of the project.

« WEB-AVO

— Several test iterations are required to optimize the performance of a new
algorithm.

— Intensive data analysis is necessary when changing dimensionality (2-D to 3-D) of
the problem.

o Ji-Fi
— More details of the geological heterogeneity of the studied reservoir.
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SYNERGY OPPORTUNITIES

* Any CO, storage project with conventional time-lapse seismic data
* Any project that requires reservoir characterization

 Joint inversion projects with conventional surface seismic and controlled
source electromagnetic data
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PROJECT SUMMARY

e Key findings

Workflows based on different inversion schemes (WEB-AVO and Ji-Fi) can
complement each other or be used individually to improve the certainty
about the position of CO, distribution in a reservairr.

High sensitivity to compressibility and good quality of data to estimate a
parameter sensitive to pressure (WEB-AVO-M).

A Bayesian inversion approach that implicitly includes seismic facies can be
used to reduce the uncertainty in forecasting CO, saturation changes within
the reservorr.

Seamless integration of inversion results to reservoir simulation to update
static and dynamic reservoir models.
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PROJECT SUMMARY

 Next steps
— Finalize analysis and validation of inversion results.

— Complete update of the static geologic model and dynamic simulation

model.
— Publish results of the project.
— Final report.
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BENEFITS TO THE PROGRAM

Program Goals Addressed

1.

w

10.

Develop methods that improve the certainty about the position of the
CO, plume over time, within various geologic formations and
depositional environments.

Detect stored CO, and assess the CO, plume boundaries over time.
Quantify the limits of detection and thresholds of uncertainty.

Account for the qualities of the fluids and types of storage reservoirs
(formations, depositional environments, depths) during and after
injection.

Associate the monitoring technique with plume extent and location.

Apply data from multiple monitoring sources. The approach employs
both Bayesian techniques and joint inversion.

Validation is required. This will be done by using existing software
historical monitoring data (a time-lapse seismic data set from 2012
and 2014).

Continue development of technologies that have been validated at the

proof-of-concept level, or TRL3.

Technologies should progress through TRL4 such that components

are integrated and tested in a laboratory environment to ensure that
performance is consistent with updated performance attributes and

requirements.

Supports goals 1, 2, and 4 of DOE’s Carbon Storage Program goals.
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Benefits Statement

The proposed project will develop and apply new modeling and
monitoring tools in the form of two promising joint inversion techniques.
The tools will be applied to a time-lapse 4-D seismic data set to
address and resolve shortcomings of current inversion technology and
time-lapse amplitude difference interpretation. WEB time-lapse joint
inversion offers the ability to separate the effects of CO, saturation
from pressure by inverting directly for compressibility and by outputting
a CO, saturation model in depth, which will better define the extent
and position of the CO, saturation plume and provide an independent
means of determining the mass of stored CO,. Joint impedance and
facies inversion are expected to improve the resolution of facies and
their effect on the distribution of CO,. Incorporating the inversion
results into predictive simulations could lead to better understanding of
the subsurface behavior, position, and boundaries of the CO, plume
over time. The proposed research supports the DOE Carbon Storage
Program'’s goals to 1) develop and validate technologies to ensure
99% storage permanence and 2) develop technologies to improve
reservoir storage efficiency while ensuring containment effectiveness.
3) Information produced will be useful for inclusion in DOE’s Carbon
Storage best practices manuals for monitoring, verification, and
accounting.
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PROJECT OVERVIEW — GOALS AND OBJECTIVES

* Develop a workflow to quantitatively estimate reservoir properties and the amount of
CO, stored in the reservoir from time-lapse seismic inverted parameters, calibrated
and validated with a rock physics model and geologic information.

* Reduce the uncertainty in detecting and assessing the location of the CO, plume
boundaries using Bayesian techniques in the joint inversion of seismic parameters
and sedimentary facies.

 Validate by comparing the results to conventional inversion and previous qualitative
reservoir characterization.

e Use the results from (1) and (2) to update the static geologic model and dynamic
simulation model.

 Anticipated Outcome: Advancement of state-of-the-art CO, monitoring methods from
the current TRL3 to TRLA4.
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ORGANIZATION CHART

EERC SB53631.Al

Project Partners

Senior Oversight Hele el B DOE NETL
Charles Gorecki EERC Denbury Resources

. . Project Director/ Delft Inversion
Project Advisor Principal Investigator lkon Science

Nick Azzolina César Barajas-Olalde Computer Modelling Group

Task 1.0 Task 2.0 Task 3.0 Task 4.0

Project Management, WEB Time-Lapse Joint Impedence and Integration and
Planning, and Joint Inversion Facies Time-Lapse Validation
Reporting Inversion

Lead Lead Lead Lead
César Barajas-Olalde Cesar Barajas-Olalde Don Adams Lu Jin
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GANTT CHART

2-year Project
One Budget Period

Budget Period 1
2018 l| 2019
Start End Q1 | Q2 Q3 Q4 Q5 Qb Q7 Q8
Task/Subtask Date  Date |[Jan[Feb[Mar|Apr [May[Jun]| Jul [Aug [Sep|Oct[Nov[DecffJan[Feb]Mar| Apr[May[Jun| Jul [ Aug]Sep|Oct[Nov] Dec
[
1.0 — Project Management, Planning, and Reporting 11118 12131119
01V D2, D3 M2 ¢
1.1 — Project Management and Planning 11118 12131119
D6, D7 Y
1.2 — Project Reporting 11118 12131119
2.0 - WEB Time-Lapse Joint Inversion vs - 22619 | N R
2.1 — Data Gathering, Loading, and Quality Check 1118 3/3118
2 2 — Compressibility Effects and Background Model | 4/1/18 8/31/18
2.3 — Seismic Conditioning and Well Tie &1/18 9/30M18 D4
M3 ¢
2.4 —WEB Inversion to Reservoir Properties 9118  2/28/19
3.0 — Joint Impedence and Facies Time-Lapse Inversion | 7/1/18  7/31/19 —
3.1 — Log Conditioning and Rock Physics Modeling 71118 813118
3.2 — Seismic AVO Conditioning 8118 10/31/18 D5y
M4 @
3.3 — Joint Inversion to Reservoir Properties 101118 7/31/19
4.0 - Integration and Validation 1119 1213119 .|
4.1 — Geomodel Refinement 17119 373119
4.2 — Predictive Simulations and Comparisons 2119  6/30/19
Ms® D8 Y
4.3 — Analysis of Results 4119 12/3119
Milestones ¢ Deliverables¥
M1 — Hold DOE NETL Kickoff Meeting D1 — Project Management Plan (updated)
M2 — Finalize Contracts with Project Partners D2 — Technology Maturation Plan (updated)
M3 — Complete WEB Time-Lapse Joint Inversion D3 — Data Management Plan (updated)
M4 — Complete Joint Impedence and Facies Inversion D4 —Interim Report on Web Time-Lapse Joint Inversion
M5 — Complete Predictive Simulations and Comparisons D5 — Interim Report on Joint Impedence and Facies Inversion
D6 — Final Technical Report
D7 — Data Submitted to NETL EDX
D& — Journal Article or Technical Paper Draft
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Simultaneous time-lapse WEB-AVO inversion for seismic reservoir monitoring:
Application to CO, enhanced oil recovery at the Bell Creek oll field. SEG Annual

International Meeting, Expanded Abstracts, p. 564-568.
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